SiC MOSFET真的有必要使用沟槽栅吗?

发布时间:2022-12-28  

众所周知,“挖坑”是的祖传手艺。在硅基产品时代,的沟槽型IGBT(例如TRENCHSTOP系列)和沟槽型的就独步天下。在碳化硅的时代,市面上大部分的SiC 都是平面型元胞,而依然延续了沟槽路线。难道英飞凌除了“挖坑”,就不会干别的了吗?非也。因为SiC材料独有的特性,SiC 选择沟槽结构,和IGBT是完全不同的思路。咱们一起来捋一捋。

本文引用地址:


关于IGBT使用沟槽栅的原因及特点,可以参考下面两篇文章:


●   英飞凌芯片简史


●   平面型与沟槽型IGBT结构浅析


MOSFET全称金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor)。MOSFET的简化结构如下图所示:硅片表面生长一层薄薄的氧化层,其上覆盖多晶硅形成门极,门极两侧分别是N型注入的源极和漏极。当门极上施加的电压高于阈值电压时,门极氧化层下面就形成了强反型层沟道。这时再给漏源极之间施加一个正压,电子就可以从源极经过反型层沟道,源源不断地流到漏极。电流就这样形成了。


1.png


功率MOSFET为了维持较高的击穿电压,将漏极放在芯片背面,整个漂移层承受电压。功率MOSFET的导通电阻,由几部分构成:源极金属接触电阻、沟道电阻、JFET电阻、漂移区电阻、漏极金属接触电阻。设计人员总是要千方百计地降低导通电阻,进而降低器件损耗。对于高压硅基功率器件来说,为了维持比较高的击穿电压,一般需要使用较低掺杂率以及比较宽的漂移区,因此漂移区电阻在总电阻中占比较大。碳化硅材料临界电场强度约是硅的10倍,因此碳化硅器件的漂移区厚度可以大大降低。对于1200V及以下的碳化硅器件来说,沟道电阻的成为总电阻中占比最大的部分。因此,减少沟道电阻是优化总电阻的关键所在。


1672140686820512.png


再来看沟道电阻的公式。


3.png


式中:


Lchannel:沟道长度,


Wchannel:沟道宽度,


COX:栅氧电容,


μn,channel:沟道电子迁移率


从上式可以看出,沟道电阻和沟道电子迁移率(μn,channel)成反比。沟道形成于SiO2界面处,因此SiO2界面质量对于沟道电子迁移率有直接的影响。通俗一点说,电子在沟道中流动,好比汽车在高速公路上行驶。路面越平整,车速就越快。如果路面全是坑,汽车就不得不减速。而不幸的是,碳化硅材料形成的SiC-SiO2界面,缺陷密度要比Si-SiO2高得多。这些缺陷在电子流过会捕获电子,电子迁移率下降,从而沟道电阻率上升。


1672140664238881.png


平面型器件怎么解决这个问题呢?再看一下沟道电阻的公式,可以看到有几个简单粗暴的办法:提高栅极电压Vgs,或者降低栅极氧化层厚度,或者降低阈值电压Vth。前两个办法,都会提高栅极氧化层中的电场强度,但太高的电场强度不利于器件的长期可靠性(栅氧化层的击穿电压一般是10MV/cm,但4MV/cm以上的场强就会提高器件长期潜在失效率)。如果器件的阈值电压Vth太低,在实际开关过程中,容易发生寄生导通。更严重的是,阈值电压Vth会随着温度的升高而降低,高温下的寄生导通问题会更明显。


1672140650994903.png

平面型SiC MOSFET栅氧薄弱点


好像进入到一个进退两难的境地了?别忘了,碳化硅是各向异性的晶体,不同的晶面,其态密度也是不同的。英飞凌就找到了一个晶面,这个晶面与垂直方向有4°的夹角,在这个晶面上生长SiO2, 得到的缺陷密度是最低的。这个晶面接近垂直于表面,于是,英飞凌祖传的”挖坑”手艺,就派上用场了。CoolSiC™ MOSFET也就诞生了。需要强调一下,不是所有的沟槽型MOSFET都是CoolSiC™! CoolSiC™是英飞凌碳化硅产品的商标。CoolSiC™ MOSFET具有下图所示非对称结构。


6.png


CoolSiC™  MOSFET使用沟槽有什么好处?


首先,垂直晶面缺陷密度低,沟道电子迁移率高。所以,我们可以使用相对比较厚的栅极氧化层,同样实现很低的导通电阻。因为氧化层的厚度比较厚,不论开通还是关断状态下,它承受的场强都比较低,所以器件可靠性和寿命都更高。下图比较了英飞凌CoolSiC™ MOSFET与硅器件,以及其它品牌SiC MOSFET的栅氧化层厚度对比。可以看到,CoolSiC™ MOSFET 栅氧化层厚度为70nm,与Si器件相当。而其它平面型SiC MOSFET栅氧化层厚度最大仅为50nm。如果施加同样的栅极电压,平面型的SiC MOSFET栅氧化层上的场强就要比沟槽型的器件增加30%左右。


1672140627674249.png


而且,CoolSiC™ MOSFET阈值电压约为4.5V,在市面上属于比较高的值。这样做的好处是在桥式应用中,不容易发生寄生导通。下图比较了英飞凌CoolSiC™ MOSFET与其它竞争对手的阈值电压,以及在最恶劣工况下,由米勒电容引起的栅极电压过冲。如果米勒电压过冲高于阈值电压,意味着可能发生寄生导通。英飞凌CoolSiC™ 器件的米勒电压低于阈值电压,实际应用中一般不需要米勒钳位,节省驱动电路设计时间与成本。


1672140614559287.png


要说给人挖坑容易,给SiC“挖坑”,可就没那么简单了。碳化硅莫氏硬度9.5,仅次于金刚石。在这么坚硬的材料上不光要挖坑,还要挖得光滑圆润。这是因为,沟槽的倒角处,是电场最容易集中的地方,CoolSiC™ 不光完美处理了倒角,还上了双保险,在沟槽一侧设置了深P阱。在器件承受反压时,深P阱可以包裹住沟槽的倒角,从而减轻电场集中的现象。


深P阱的另一个功能,是作为体二极管的阳极。通常的MOSFET体二极管阳极都是由P基区充当,深P阱的注入浓度和深度都高于P基区,可以使体二极管导通压降更低,抗浪涌能力更强。


好的,CoolSiC™  MOSFET就先介绍到这里了。CoolSiC™  MOSFET不是单纯的沟槽型MOSFET,它在独特的晶面上形成沟道,并且有非对称的深P阱结构,这使得CoolSiC™ MOSFET具有较低的导通电阻,与Si器件类似的可靠性,以及良好的体二极管特性。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    30V MOSN沟道PKC26BB替代料SVG032R4NL5;MOS管是电压控制电流器件,用栅极电压的变化控制漏极电流的变化。有P沟道MOS管和N沟道MOS,SVG032R4NL5采用......
    NMOS和PMOS详解(2023-12-19)
    组成的电路就是集成电路,由NMOS和两种管子组成的互补MOS电路,即CMOS电路。 PMOS PMOS是指n型衬底、p沟道,靠空穴的流动运送电流的MOS。 NMOS和PMOS工作原理 P沟道MOS......
    MOS管可以被制构成P沟道增强型、P沟道耗尽型、N沟道增强型、N沟道耗尽型4种类型产品。 一般主板上使用最多的是增强型MOS,NMOS最多,一般多用在信号控制上,其次是PMOS,多用......
    ,图1-2所示A 、B分别是P沟道MOS管道结构图和代表符号。 图1-1-A 图1-1-B 图1-2-A 图1-2-B 2、MOS管的工作原理 图1-3是N沟道MOS管工......
    沟道,由S极指向D极;P沟道,由D极指向S极。 4. 简单的判断方法 上面方法不太好记,一个简单的识别方法是:(想像DS边的三节断续线是连通的) 不论N沟道还是P沟道MOS,中间......
    电荷泵。 升压转换器的简化原理图,在电源和升压转换器输入之间具有一个用于短路保护的 n 沟道 MOSFET 2、P 沟道 MOS ......
    称叫P沟道管,容易想出沟道是什么类型取决于S和D端掺杂的是什么类型,立即推:S和D端区域写了N,管子就是NMOS;S和D端区域写了P,管子就是PMOS。 好,继续敲黑板知识点:MOS管的标准符号中,衬底......
    为什么使用mos管作为电池反向保护?; 今天给大家分享的是:使用 MOS管作为电池反向保护。 会分别针对 P 沟道 MOS 管作为电池反向保护和 N 沟道 MOS 管作......
    导通损耗低,使用方便。优点是零件少,缺点是有功率损耗。下面介绍有源和无源浪涌电流限制电路。 1、有源浪涌电流限制电路(P-MOS) 下图为使用P沟道MOS管的浪涌电流限制电路。P沟道的导通步长与N沟道......
    60v mos管万代ao4264E/威兆VS6410AS替代料SVGP069R5NSA;MOS管是电压控制电流器件,用栅极电压的变化控制漏极电流的变化,N沟道增强型功率MOS场效......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>