摊牌了,MOS管的真面目!

发布时间:2025-01-01 18:07:51  

图片

图片


图片

硬件设计 | MOS管篇

一般情况下,普遍用于高端驱动的MOS,导通时需要是栅极电压大于源极电压,而高端驱动的MOS管导通时源极电压与漏极电压(VCC)相同,所以这时栅极电压要比VCC大4V或10V。

如果在同一个系统里,要得到比VCC大的电压,就要专门的升压电路了,很多马达驱动器都集成了电荷泵,要注意的是应该选择合适的外接电容,以得到足够的短路电流去驱动MOS管。

MOS管是电压驱动,按理说只要栅极电压到到开启电压就能导通DS,栅极串多大电阻均能导通,但如果要求开关频率较高时,栅对地或VCC可以看做是一个电容。
对于一个电容来说,串的电阻越大,栅极达到导通电压时间越长,MOS处于半导通状态时间也越长,在半导通状态内阻较大,发热也会增大,极易损坏MOS,所以高频时栅极串的电阻不但要小,一般是需要加前置驱动电路的。
图片

点我先了解 | MOS管的基础知识


1
MOS管种类和结构
MOSFET管是FET的一种,可以被制造成增强型或耗尽型,P沟道或N沟道,但实际应用的只有增强型的N沟道MOS管和增强型的P沟道MOS管,所以通常提到NMOS,或者PMOS指的就是这两种。
至于为什么不使用耗尽型的MOS管,不建议刨根问底。
对于这两种增强型MOS管,比较常用的是NMOS,原因是导通电阻小且容易制造,所以开关电源和马达驱动的应用中,一般都用NMOS,下面的介绍中也多以NMOS为主。
MOS管的三个管脚之间有寄生电容存在,这不是我们需要的,而是由于制造工艺限制产生的,寄生电容的存在使得在设计或选择驱动电路的时候要麻烦一些,但没有办法避免,后边再详细介绍。
一般在MOS管原理图上可以看到,漏极和源极之间有一个寄生二极管,这个叫体二极管,在驱动感性负载(如马达),这个二极管很重要。
顺便说一句,体二极管只在单个的MOS管中存在,在集成电路芯片内部通常是没有的。


2
MOS管导通特性
导通的意思是作为开关,相当于开关闭合。
NMOS的特性: Vgs大于一定的值就会导通,适合用于源极接地时的情况(低端驱动),只要栅极电压达到4V或10V就可以了。
PMOS的特性: Vgs小于一定的值就会导通,适合用于源极接VCC时的情况(高端驱动)。
但是,虽然PMOS可以很方便地用作高端驱动,但由于导通电阻大,价格贵,替换种类少等原因,在高端驱动中,通常还是使用NMOS。


3
MOS开关管损失
不管是NMOS还是PMOS,导通后都有导通电阻存在,这样电流就会在这个电阻上消耗能量,这部分消耗的能量叫做导通损耗。
选择导通电阻小的MOS管,会减小导通损耗,现在的小功率MOS管导通电阻一般在几十毫欧左右,几毫欧的也有。
MOS在导通和截止的时候,一定不是在瞬间完成的,MOS两端的电压有一个下降的过程,流过的电流有一个上升的过程,在这段时间内,MOS管的损失是电压和电流的乘积,叫做开关损失。
通常开关损失比导通损失大得多,而且开关频率越快,损失也越大。
导通瞬间电压和电流的乘积很大,造成的损失也就很大,缩短开关时间,可以减小每次导通时的损失;降低开关频率,可以减小单位时间内的开关次数。这两种办法都可以减小开关损失。


4
MOS管驱动
跟双极性晶体管相比,一般认为使MOS管导通不需要电流,只要GS电压高于一定的值就可以了,这个很容易做到,但是,我们还需要速度。
在MOS管的结构中可以看到,在GS、GD之间存在寄生电容,而MOS管的驱动,实际上就是对电容的充放电。
对电容的充电需要一个电流,因为对电容充电瞬间可以把电容看成短路,所以瞬间电流会比较大。
选择/设计MOS管驱动时,第一要注意的是可提供瞬间短路电流的大小。
而在进行MOSFET的选择时,因为MOSFET有两大类型:N沟道和P沟道。
在功率系统中,MOSFET可被看成电气开关,当在N沟道MOSFET的栅极和源极间加上正电压时,其开关导通,导通时,电流可经开关从漏极流向源极。
漏极和源极之间存在一个内阻,称为导通电阻RDS(ON),必须清楚MOSFET的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。
这就是后面介绍电路图中栅极所接电阻至地,如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。
当源极和栅极间的电压为零时开关关闭,而电流停止通过器件,虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS.
图片
01
选用N沟道还是P沟道
为设计选择正确器件的第一步是决定采用N沟道还是P沟道MOSFET,在典型的功率应用中,当一个MOSFET接地,而负载连接到干线电压上时,该MOSFET就构成了低压侧开关。
在低压侧开关中,应采用N沟道MOS,这是出于对关闭或导通器件所需电压的考虑,当MOSFET连接到总线及负载接地时,就要用高压侧开关,通常会在这个拓扑中采用P沟道MOSFET,这也是出于对电压驱动的考虑。
02
确定额定电流
第二步是选择MOSFET的额定电流,视电路结构而定,该额定电流应是负载在所有情况下能够承受的最大电流。
与电压的情况相似,设计人员必须确保所选的MOSFET能承受这个额定电流,即使在系统产生尖峰电流时,两个考虑的电流情况是连续模式和脉冲尖峰,该参数以FDN304P管DATASHEET为参考,参数如图所示:
图片
在连续导通模式下,MOSFET处于稳态,此时电流连续通过器件,脉冲尖峰是指有大量电涌(或尖峰电流)流过器件,一旦确定了这些条件下的最大电流,只需直接选择能承受这个最大电流的器件便可。
选好额定电流后,还必须计算导通损耗,在实际情况下MOSFET并不是理想的器件,因为在导电过程中会有电能损耗,这称之为导通损耗。
MOSFET在导通时就像一个可变电阻,由器件的RDS(ON)所确定,并随温度而显着变化。
器件的功率耗损可由:Iload2×RDS(ON)计算,由于导通电阻随温度变化,因此功率耗损也会随之按比例变化。
对MOSFET施加的电压VGS越高,RDS(ON)就会越小;反之RDS(ON)就会越高。对系统设计人员来说,这就是取决于系统电压而需要折中权衡的地方。
对便携式设计来说,采用较低的电压比较容易(较为普遍),而对于工业设计,可采用较高的电压。
注意RDS(ON)电阻会随着电流轻微上升,关于RDS(ON)电阻的各种电气参数变化可在制造商提供的技术资料表中查到。
图片
03
确定热要求
选择MOSFET的下一步是计算系统的散热要求,设计人员必须考虑两种不同的情况,即最坏情况和真实情况。
建议采用针对最坏情况的计算结果,因为这个结果提供更大的安全余量,能确保系统不会失效。
在MOSFET的资料表上还有一些需要注意的测量数据;比如封装器件的半导体结与环境之间的热阻,以及最大的结温。
图片
器件的结温等于最大环境温度加上热阻与功率耗散的乘积:
结温=最大环境温度+[热阻×功率耗散]
根据这个方程,可解出系统的最大功率耗散,即按定义相等于I2×RDS(ON)。
由于设计人员已确定将要通过器件的最大电流,因此可以计算出不同温度下的RDS(ON)。
值得注意的是,在处理简单热模型时,设计人员还必须考虑半导体结/器件外壳及外壳/环境的热容量;即要求印刷电路板和封装不会立即升温。
通常,一个PMOS管,会有寄生的二极管存在,该二极管的作用是防止源漏端反接,对于PMOS而言,比起NMOS的优势在于它的开启电压可以为0。
而DS电压之间电压相差不大,而NMOS的导通条件要求VGS要大于阈值,这将导致控制电压必然大于所需的电压,会出现不必要的麻烦。
选用PMOS作为控制开关,有下面两种应用:
图片
第一种应用是由PMOS来进行电压选择,当V8V存在时,此时电压全部由V8V提供,将PMOS关闭,VBAT不提供电压给VSIN,而当V8V为低时,VSIN由8V供电。
注意R120的接地,该电阻能将栅极电压稳定地拉低,确保PMOS能够正常开启,这也是前文所描述的栅极高阻抗所带来的状态隐患。
D9和D10的作用在于防止电压的倒灌,D9可以省略,这里要注意到实际上该电路的DS接反,这样由附生二极管导通导致了开关管的功能不能达到,实际应用要注意。
图片
来看这个电路,控制信号PGC控制V4.2是否给P_GPRS供电。
此电路中,源漏两端没有接反,R110与R113存在的意义在于R110控制栅极电流不至于过大,R113控制栅极的常态,将R113上拉为高,截至PMOS,同时也可以看作是对控制信号的上拉。
MCU内部管脚并没有上拉时,即输出为开漏时,并不能驱动PMOS关闭,此时,就需要外部电压给予的上拉,所以电阻R113起到了两个作用,R110可以更小,到100欧姆也可。


5
MOS管的开关特性
01
静态特性
MOS管作为开关元件,同样是工作在截止或导通两种状态,由于MOS管是电压控制元件,所以主要由栅源电压uGS决定其工作状态。
工作特性如下:
※ uGS开启电压UT:MOS管工作在截止区,漏源电流iDS基本为0,输出电压uDS≈UDD,MOS管处于“断开”状态,其等效电路如下图所示。
图片
※ uGS>开启电压UT:MOS管工作在导通区,漏源电流:
iDS=UDD/(RD+rDS)
其中,rDS为MOS管导通时的漏源电阻。
输出电压:
UDS=UDD·rDS/(RD+rDS)
如果rDS《RD,则uDS≈0V,MOS管处于“接通”状态,其等效电路如上图(c)所示。
02
动态特性
MOS管在导通与截止两种状态发生转换时同样存在过渡过程,但其动态特性主要取决于与电路有关的杂散电容充、放电所需的时间,而管子本身导通和截止时电荷积累和消散的时间是很小的。
下图 (a)和(b)分别给出了一个NMOS管组成的电路及其动态特性示意图。
图片
NMOS管动态特性示意图
当输入电压ui由高变低,MOS管由导通状态转换为截止状态时,电源UDD通过RD向杂散电容CL充电,充电时间常数τ1=RDCL。
所以,输出电压uo要通过一定延时才由低电平变为高电平。
当输入电压ui由低变高,MOS管由截止状态转换为导通状态时,杂散电容CL上的电荷通过rDS进行放电,其放电时间常数τ2≈rDSCL。
可见,输出电压Uo也要经过一定延时才能转变成低电平。
但因为rDS比RD小得多,所以,由截止到导通的转换时间比由导通到截止的转换时间要短。
由于MOS管导通时的漏源电阻rDS比晶体三极管的饱和电阻rCES要大得多,漏极外接电阻RD也比晶体管集电极电阻RC大。
所以,MOS管的充放电时间较长,使MOS管的开关速度比晶体三极管的开关速度低。

不过,在CMOS电路中,由于充电电路和放电电路都是低阻电路,因此,其充、放电过程都比较快,从而使CMOS电路有较高的开关速度。


图片


图片

部分电子书籍截图

图片


【整套硬件学习资料合集】

图片



文章来源于:电路大讲堂    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    工程师入门基础知识 (一)基础元器件认识(二) tips:学习资料和数据来自《硬件工程师炼成之路》、百度百科、网上资料 。 1......
                = 3960/1024 = 3.9K   从上面的分析之后我们得到了此程序占用的内存 ROM = 34.5K RAM = 3.9K   然后我们从百度百科搜索得STM32C8T6......
    顶级数学竞赛金牌教练陈晨曾点评称,“无论姜萍是否作弊,都应该保护学生,这件事儿的舆论已经越界了。” (来源:涟水中等专业学校) 目前,百度百科、搜狗百科、抖音百科、360百科......
    等国民经济基础工业的低敏感石墨物项的临时管制。 有关事项公告如下: ▲图片来源:商务部网站 据百度百科介绍,石墨是碳的一种同素异形体,具有化学性质稳定,以及耐高温性、导电/导热性、润滑性、可塑性、抗热......
    ;====================================================================       END 4 效果 4.1 方波 4.2 锯齿波 4.3 三角波 5 参考资料 [1] 80c51_百度百科 (baidu.com) [2......
    授权转载;首图来源:百度百科) 如需获取更多资讯,请关注微信公众账号:半导体行业观察 责任编辑:mooreelite......
    控制、PID循迹、PID跟随、遥控、避障、PID角度控制、视觉控制、电磁循迹、RTOS等功能。 我们的智能小车用到了ADC测量电池电压的功能,这章节我们做一下。我们的一篇在这里[第一篇]什么是ADC 百度百科......
    位于宫城县的白石市工厂同无灾情传出正常运作。 (首图来源:百度百科) 福岛の地震、东北企业の工场の多くは平常稼働 日产は従业员避难で稼働休止 クレハで出火 コンビニ・外食は一部店舗休业も 如需获取更多资讯,请关注微信公众账号:半导......
    用锁相环路就可以实现稳定且高频的时钟信号。 ---来自百度百科 每一块STM32处理器至少都有一个PLL,有的甚至有好几个PLL。 比如,F4有两个PLL: F7有三个PLL: 当然,每个MCU型号......
    达到 23%。其他地区则价格持稳。 (首图来源:百度百科) 如需获取更多资讯,请关注微信公众账号:半导体行业观察 责任编辑:mooreelite......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>