资讯

微机原理:处理器结构特点(2024-08-08)
微机原理:处理器结构特点;问1.处理器通常有哪几种结构?他们的特点分别是什么?有什么优点和缺点?
答1.这里说的处理器的结构是指处CPU的存储结构,分为冯诺依曼结构和哈佛结构。
(1)冯诺依曼:将程......

8051单片机架构类型有哪些(2023-10-20)
据和代码位于不同的内存块时,这种架构被称为哈佛架构。如果数据和代码位于同一内存块中,则该架构称为冯诺依曼架构。
冯诺依曼架构
冯诺依曼架构最早由计算机科学家约翰冯诺依曼提出。在这种架构中,指令......

关于STM32的基础知识(2022-12-19)
微控制器。
注意:51单片机是5V工作电压而STM32是3.3V工作电压
2、STM32和ARM7的关系
ARM7和STM32的内核都是由ARM公司设计的。ARM7内核采用的是冯诺依曼结构(也就......

中科院发布寒武纪深度神经网络处理器 速度完爆x86(2016-11-19)
院计算技术研究所的陈天石就举出一个例子,谷歌与斯坦福大学合作,利用16000个处理器核构建了一个10亿神经突出的深度神经网络,耗时多日才完成猫脸识别。
目前通用型处理器都是基于冯诺依曼结构,其存储和运算处理是分离的,需要......

ARM的发展历程介绍(2023-06-10)
入式处理器系列。
0.9MIPS/MHz的三级流水线和冯诺依曼结构。ARM7系列包括ARM7TDMI、ARM7TDMI-S、带有高速缓存处理器宏单元的ARM720T。该系列处理器提供Thumb
16位压......

现在PIC单片机还有用的吗?(2023-03-01)
”,而PIC单片机则是采用“哈佛体系结构”。这里简单介绍一下两种体系结构的不同:冯诺依曼体系结构是单总线结构,即数据传输与指令传输共用一条总线;而哈佛体系结构则是双总线结构,即数......

人工智能机器学习计算和存储同时进行(2022-12-24)
有支持实时数据处理、高传输带宽和低功耗等额外优势。Donald表示,FortiX解决方案的内存搜索(IMS)和内存计算(CIM)是数字和模拟架构的计算功能。当传统的存储和计算分离的冯诺依曼架构遇到延迟和功耗瓶颈时,这种......

MCS-51 单片机的硬件结构(2022-12-12)
立控制线组成。
四、存储器结构:
单片机结构有两种类型:一种是程序存储器与数据存储器分开的形式,即哈弗结构; 另一种是通用计算机广泛使用的程序存储器和数据存储器合二为一的结构,冯诺依曼结构。冯诺依曼结构是在哈佛结构......

存算一体:内核架构创新,打破算力能效极限|深度研报(2023-06-01)
数据存储与运算单元分离,算力提升受限,功耗增加:
应对存储单元与计算单元分离的现状,存算一体技术思路应运而生,在器件单元上存储与计算单元融合,通过底层的架构创新解决冯诺依曼架构的固有瓶颈:
由于......

后摩智能携首款存算一体智驾芯片亮相2023世界人工智能大会(2023-07-06)
冯·诺依曼架构已存在70多年,面对智能时代大算力需求,逐渐遇到瓶颈;冯诺依曼将存储和计算分开的架构,就如同在仓库和厨房分离的情况下去炒一盘番茄炒蛋,需要反复在厨房和仓库之间来回奔跑,形成了“功耗墙”的问......

探索AI大算力芯片的未来形态:全数字存算一体(2024-06-06 10:35)
有一类与众不同的芯片,这两年正以其独特的架构吸引着产业界的关注。存算一体,相比传统冯诺依曼架构,不仅避开“存储墙”限制;而且借着AI发展的东风,显得格外有潜力。亿铸科技作为市场上为数不多基于存算一体技术的AI大算......

探索AI大算力芯片的未来形态:全数字存算一体(2024-06-05)
有一类与众不同的芯片,这两年正以其独特的架构吸引着产业界的关注。
存算一体,相比传统冯诺依曼架构,不仅避开“存储墙”限制;而且借着AI发展的东风,显得格外有潜力。亿铸科技作为市场上为数不多基于存算一体技术的AI大算......

探索AI大算力芯片的未来形态:全数字存算一体(2024-06-05)
有一类与众不同的芯片,这两年正以其独特的架构吸引着产业界的关注。本文引用地址:,相比传统冯诺依曼架构,不仅避开“存储墙”限制;而且借着AI发展的东风,显得格外有潜力。亿铸科技作为市场上为数不多基于技术的AI企业,正计......

探索AI大算力芯片的未来形态:全数字存算一体(2024-06-05)
有一类与众不同的芯片,这两年正以其独特的架构吸引着产业界的关注。
存算一体,相比传统冯诺依曼架构,不仅避开“存储墙”限制;而且借着AI发展的东风,显得格外有潜力。亿铸科技作为市场上为数不多基于存算一体技术的AI大算......

无需3nm工艺 全球首颗商用存内计算SoC问世:功耗低至1毫安(2022-12-29)
半导体芯片公司知存科技今年3月份推出了WTM2101芯片,是全球首颗商用存内计算SoC。本文引用地址:存内计算是一种新型架构的芯片,相比当前的计算芯片采用冯诺依曼架构不同, 存内计算是计算与数据存储一体,可以......

清华研发出“全球首颗”,这种芯片要火了?(2023-10-11)
一体就是将存储器和处理器合并为一体。想象一下,人类在思考时候从来都是存储和计算一体的,并不会存在分开的情况,而这种架构就是借鉴了我们人脑的处理方式。
我们为什么需要存算一体?冯诺依曼瓶颈经典计算机体系结构中,处理......

SIA重磅报告:半导体未来的机会(上)(2017-05-16)
需要对超越传统的CMOS器件和电路、冯诺依曼结构以及信息处理方法进行研究。另外,还需要研发新材料和可扩展工艺,产生新的制造模式,并将这些新技术融入到产品制作中。
制定......

突破冯·诺依曼架构瓶颈!全球首款存算一体AI芯片诞生(2021-12-03)
院成功研发新型架构芯片。该芯片是全球首款基于DRAM的3D键合堆叠存算一体AI芯片,可突破冯·诺依曼架构的性能瓶颈,满足人工智能等场景对高带宽、高容量内存和极致算力的需求。
在特定AI场景中,该芯片性能提升10......

2个数量级提速,湖南大学自研“存算一体”非冯·诺依曼类脑芯片架构(2022-05-18)
wall)”和“功耗墙(power wall)”等瓶颈问题严重制约了计算性能的提升。
为此,刘杰教授团队自主设计了“存算一体”的类脑芯片架构,并基于FPGA研制出了基于新型非冯·诺依曼芯片架构的......

全球首颗非冯诺依曼架构处理器即将面世(2017-06-13)
全球首颗非冯诺依曼架构处理器即将面世;
来源:内容来自eettaiwan ,谢谢。
美国国防部先进计划署(DARPA)目前正资助开发一种全新的非冯-诺伊曼(non-von......

清华大学团队类脑芯片研究取得大突破(2017-05-17)
型系统达到了与现有CPU接近的识别率和泛化能力。该研究同时测量了学习过程中电子突触阵列在每次迭代时所消耗的能量,并评估、比较了在基于英特尔至强协处理器(Intel Xeon Phi)加片外存储系统的冯诺依曼架构的......

关于STM32系列微控制器的几点认识(2022-12-16)
期国内前辈们称之为单片机。单片机也好微控制器也罢,它们都可以称之为片上系统SOC,因为它们都具备冯诺依曼架构规定的计算机五大部件,满足独立控制,运算,存储,输入,输出的条件。
STM32系列......

先进算力成果显著,业内首款商用量产存算一体芯片亮相世界人工智能大会(2023-07-07)
领域最火热的架构创新方向,能有效解决传统冯诺依曼架构芯片的“存储墙〞“功耗墙〞 问题,实现算力突破。
7月6日,2023世界人工智能大会(WAIC)在上海世博中心开幕,中国......

三维集成技术何以助力人工智能芯片开发,推动“新基建”?(2020-08-17)
)和混合键合技术(Hybrid Bonding)已量产,并应用于两片晶圆堆叠的非存储类产品。如基于武汉新芯混合键合技术生产的AI加速器芯片正是打破传统的冯·诺依曼结构的例证,该芯......

持续自研旗舰芯片:将使用户以及使用者的体验变得越来越好(2022-12-22)
最大的影响是其总线接口。传统的ARM处理器使用单一总线接口。如ARM7处理器采用冯诺依曼结构,指令和数据共用一条总线,从而核外部为单总线接口[1];ARM9虽然使用了哈佛结构,核内部指令总线和数据总线分开,但这......

国产厂商,死磕这颗芯片(2024-01-04)
)。其中,冯·诺依曼结构的处理器使用同一个存储器,经由同一个总线传输;哈佛结构是一种将程序指令存储和数据存储分开的存储器结构。
具体到DSP方面,根据TI前首席科学家、DSP产品......

越来越多的行业拥抱人工智能产业,高效融合发展(2022-12-12)
试图了解大脑是如何计算的。
而冯·诺依曼发明“冯诺依曼计算机体系结构”,事实上也是来源于最早在构建“人工大脑”方面的工作,他从1940 年代还非常有限的大脑知识中汲取了灵感。
掀起......

每刻深思邹天琦:感存算模拟芯片实现低功耗视觉手势识别(2023-05-14)
常开,则可以进一步降低功耗。
模拟计算可以突破数字芯片发展困境,因此未来有很大的发展空间。邹天琦表示,目前摩尔定律已接近极限,先进制程缺失,同时,冯诺依曼的传统存算分立式架构已经开始出现访存墙瓶颈,算力......

每刻深思邹天琦:感存算模拟芯片实现低功耗视觉手势识别(2023-05-15 09:31)
以进一步降低功耗。模拟计算可以突破数字芯片发展困境,因此未来有很大的发展空间。邹天琦表示,目前摩尔定律已接近极限,先进制程缺失,同时,冯诺依曼的传统存算分立式架构已经开始出现访存墙瓶颈,算力......

平头哥首颗自研企业级SSD主控芯片“镇岳510”揭秘:更懂云计算,更懂云上应用(2023-11-01)
平头哥首颗自研企业级SSD主控芯片“镇岳510”揭秘:更懂云计算,更懂云上应用;
数据中心可以看作是一台大号的计算机,而云计算同样也符合冯诺依曼结构:数据从存储设备中取出,通过......

人工纳米流体突触可实现存内计算,有助研发节能的液体硬件(2024-03-22)
算机则在内存单元和中央处理单元之间来回传输数据。这种低效的分离(冯诺依曼瓶颈)导致计算机能源成本不断上升。
自20世纪70年代以来,研究人员一直致力于研究忆阻器。这是一种电子元件,可像突触一样计算和存储数据。但洛......

国家纳米科学中心在自旋分子存储器方面取得新进展(2022-03-19)
国家纳米科学中心在自旋分子存储器方面取得新进展;经典的冯·诺依曼计算机架构中,数据存储与处理分离。由于指令、数据在存储器和处理器之间的高频转移,导致了计算机发展的“存储墙瓶颈”与“功耗墙瓶颈”。能不......

51单片机启动过程(2024-07-29)
真正存放中断服务程序的空间去执行。
51单片机是冯诺依曼架构?硬件寄存器、flash【程序】、ram【数据】各自有自己的地址,好像都是从0开始。
内部 RAM 中的 30H~FFH 单元是用户 RAM 和堆......

一种适合ChatGPT的芯片材料(2023-03-27)
这些任务都是通过基于问答的交互进行的。人工智能系统依赖于深度学习,这需要大量的训练来最大限度地减少错误,从而导致内存和处理器之间的数据传输频繁。然而,传统数字计算机系统的冯诺依曼架构将信息的存储和计算分开,导致......

新时代的芯片设计思路,不看你就out了(2017-06-23)
Neifert表示。“但是我们看到的是这些厂商真的思考他们需要的是什么,他们需要实现什么,然后基于这些需求,选择最终的处理器。”
制约这些选择的一个主要因素是性能。但是具有讽刺意味的是,对于ARM来说,它的主要特点是......

很多人说单片机很简单,有些本专业学生为什么学起来这么吃力?(2022-12-27)
面是因为自己参加工作太多年,都是基于单片机产品开发应用的,理论知识基本上全忘了,另一方面,大学教材的知识,在单片机开发实际工作中基本上用不到。
就像单片机的结构是冯诺依曼?还是哈佛结构?我们工作中需要了解吗?不需......

基于LPC2220FBD144型ARM7芯片实现配电综合测控仪的应用方案(2023-03-14)
LQFP封装,四条边上各有36个引脚。该芯片具有改进的冯诺依曼结构(指令和数据共用一条32位总线),采用三级流水线,可以同时进行几个操作,并能使外处理和存储器系统连续操作。该芯片内嵌高达256KB的高......

CPU 2.0时代即将到来!爆炸性成果使任何CPU性能提升100倍(2024-06-14)
立即用于基于冯·诺依曼架构的标准计算机设计,实现所谓的"CPU
2.0"级别的吞吐量,PPU的集成还能消除在高性能应用程序中对昂贵GPU进行加速的需求。
Flow
Computing......

算力256TOPS,典型功耗35W,存算一体芯片杀入智能驾驶(2023-05-11)
了市场对于芯片算力需求飙升,时代进入了一个AI爆发的新阶段。
不过,算力飙升后也让大家看到了芯片面临的瓶颈,即:存储墙和功耗墙。
目前市面上的大多数芯片,均基于1945年提出的冯·诺依曼计算系统进行设计,计算......

TPU芯片:国内面对AI大模型的另一个解法(2024-07-23)
大学电子学院碳基电子学研究中心彭练矛-张志勇团队,在下一代芯片技术领域取得突破,成功研发出世界首个基于碳纳米管的张量处理器芯片(TPU)。
官方表示,高能效计算芯片的发展有两个重大瓶颈:一是传统冯诺依曼......

51系列中嵌入式单片机的优缺点分析(2023-08-21)
;将寄存器20H的内容直接传送至寄存器30H中),因而PIC单片机的瓶颈现象比51系列还要严重,这在编程中很有感受。
总线结构:MCS-51单片机的总线结构是冯-诺依曼型,计算......

感应电机的特点是什么_感应电机和普通电机的区别(2023-05-31)
感应电机的特点是什么_感应电机和普通电机的区别; 感应电机的特点是什么
感应电机是一种常见的交流电机,其主要特点如下:
结构简单:感应电机只有定子和转子两部分,没有电刷、电刷......

FPGA、 CPU、GPU、ASIC区别(2024-12-17)
一点不同的事情,就要占用一定的 FPGA 逻辑资源。如果要做的事情复杂、重复性不强,就会占用大量的逻辑资源,其中的大部分处于闲置状态。这时就不如用冯·诺依曼结构的处理器。
数据......

AI智算时代,我们需要什么样的存储?(2024-07-25 11:38)
处理主要关注的资源成本为CPU、内存与存储、网络及功耗,关注的性能为延迟、带宽及服务质量。其中,功耗指标受到的关注大幅增长。然而,随着需求的水涨船高,一系列瓶颈问题浮出水面。一方面,传统冯诺依曼......

51单片机的工作原理(2022-12-15)
51单片机的工作原理;51单片机与很多单片机的工作原理是一致的,而且都遵循冯诺依曼架构,即就是数据区和代码区是区分开来的。在单片机中的具体表现就是程序ROM区和数据RAM区。
本文......

FPGA较传统CPU强在哪里?竟获得了微软的青睐!(2017-01-03)
性能和灵活性的比较。
FPGA 为什么快?「都是同行衬托得好」。 CPU、GPU 都属于冯·诺依曼结构,指令译码执行、共享内存。FPGA 之所以比 CPU 甚至 GPU 能效高,本质上是无指令、无需共享内存的体系结构......

知存科技再获深创投领投1亿元B1+轮融资(2022-09-28)
成员来自国际上最早研发存算一体技术的专家团队,并在2016年实现了全球第一款存算一体AI芯片。公司产品商业化进度全球领先,已成功量产流片,并与海内外消费电子头部企业开展深度战略合作与产品落地。
存算一体突破了传统冯·诺依曼架构的......

AI智算时代,我们需要什么样的存储?(2024-07-24)
驱动应用成为主要发展趋势。数据处理主要关注的资源成本为CPU、内存与存储、网络及功耗,关注的性能为延迟、带宽及服务质量。其中,功耗指标受到的关注大幅增长。
然而,随着需求的水涨船高,一系列瓶颈问题浮出水面。一方面,传统冯诺依曼......

清华团队发布3D DRAM存算一体架构!(2024-08-12)
对内存墙和IO墙现象进行基础理解,这两类现象来源于当前计算架构中的多级存储。如图所示,当前的主流计算系统所使用的数据处理方案,依赖于数据存储与数据处理分离的体系结构(冯诺依曼架构),为了......

神经拟态计算赛道又开始热起来了(2024-05-31)
利用两个方式实现低功耗。首先是改变了传统冯诺依曼的计算架构方式,通过存算一体,节约了数据在内存与CPU之间搬运的功耗,同时又可以实现高带宽。其次,则是采用了异步时钟,通过事件驱动方式工作,即有......
相关企业
;诺依曼;;
;嘉盛电子商行;;深圳市嘉盛电子一直以信誉为主. 诚信经营,货真价实. 是什么货就是什么货.质量保证 以跟广大客户长期合作为基础. 价格可以谈,质量你放心.
;上海联单数码科技有限公司;;还是什么都没有
;香港忠芯国际电子有限公司;;本公司只做自己的现货,报价什么就是什么,欢迎来电. 查看全部>> 主营:只卖自己库存, 欢迎询价!
;隆兴家电维修部;;其实也不是什么公司,就是一个小小的家电维修部
;汕头市万达电子商行;;汕头市万达电子商行已有多年的电子销售经验! 一直持以“诚信经营”“质量第一”坚决对假货说不,的经营 信念!是什么货就报什么货。在业界已积累不错的口碑!为了 快捷交易,我均
;北京展创世纪科技有限公司;;经销商一个,现货不多,承诺什么货就是什么货,不卖假货,不坑人。保证原装就是已知可靠来源。绝不做缺德事。可供一些冷偏门及部分军工,主营自己的终端客户,少有贸易。感谢
;乐清市索贝电气有限公司;;我司专业制造各种引进按钮开关,公司产品多数是由国外引进的新颖产品,其中部分是我司专利产品,公司产品的特点是:结构紧凑、外形美观、电寿命长、安装方便,故深
;上海彰峰电子科技;;我们公司主要是代理三菱,夏普液晶屏和AMT,TOUCHKIT,ELO的触摸屏,三菱屏主要用于军工,工控,医疗,安防监控及仪器仪表等领域,是一款工业级的液晶屏,其特点是:宽温
;成都壹珈膜结构景观工程有限公司;;成都壹珈膜结构是一家设计制作各种张拉膜、骨架膜、膜结构、景观膜结构、舞台膜结构、停车棚膜结构、体育看台膜结构、加油站膜结构、酒吧膜结构、公交站台膜结构、收费站膜结构的