SVPWM原理推导与Mathcad建模控制实现

发布时间:2024-08-05  

前言:

SVPWM是变流器控制基础,其实现流程大致为,判断合成矢量所在扇区,计算相邻矢量作用时间,计算各桥臂导通时间,得到各相PWM占空比,更新相应寄存器值。输出开关控制信号。


1.判断矢量所在扇区:

根据参考矢量Vref与U4(100)夹角θ的大小可以很清楚的判断出Vref所处的扇区。

图片

图片

图片

图片

图片

采用上述方法,只需经过简单的加减及逻辑运算即可确定所在的扇区。并且ABC实际就是8421bcd码,通过8421bcd码与十进制的对应关系就得到了扇区。

2.矢量作用时间:

Vref在六个扇区中的变化轨迹都是相同的,只需计算出Vref在一个扇区中变化时相邻矢量作用的时间,即可推导出所有的情况。以I扇区为例,计算一个增量位置矢量的作用时间:

图片

图片

图片

图片

图片

通过以上定义与分析可以得到各矢量得状态保持时间。其它扇区的只需要将θ减去60°的n倍即可,n为扇区序号减1。Tx,Ty可分别计算两个参考矢量作用时间。

图片

结论:该算法用到空间角度及三角函数,计算基本电压矢量作用时间。使得直接计算基本电压矢量作用时间变得十分困难。

一般都是建立在两相静止坐标系下,根据的值直接计算开关导通时间,因为的值在座标变换过程中本就会计算出一次,所以这样做便可省去一次三角函数计算,进而减小计算量。

参照T4,T6的作用时间推导,搭建其它扇区mathcad模型,计算矢量作用时间。

图片

图片

图片

通过矢量作用时间的求解,可以发现这些结果可进一步简化计算结果:

定义X,Y,Z

图片

图片

图片3.输出开关控制信号:

要实现对开关导通与关断的有效控制,仅仅得到矢量作用时间是不够的,还需要根据矢量作用时间计算出每个开关导通和关断的具体时刻。还有如何产生实际的脉宽调制波形。

基本矢量排序:

根据八个基本电压空间矢量的大小和位置可知排序为462315,这六个矢量控制的是功率半导体-Mosfet或者IGBT;这些管子在开关和导通过程中会有热量产生,也就是开关损耗。为了最大限度的降低损耗,每个扇区(包含扇区内部)的开关切换,都需要保证只改动一个桥臂的动作,这样发热量最小,功率密度才能做的更高。

图片

逆时针旋转(462315):100—110—010—011—001—101

顺时针旋转(451326):100-101-001-011-010-110

可得每个扇区的开关切换,只改变一个桥臂的动作

扇区内发波:

在SVPWM调制方案中,零矢量的选择是最具灵活性的,适当选择零矢量,可最大限度地减少开关次数,尽可能避免在负载电流较大的时刻的开关动作,最大限度地减少开关损耗。一个开关周期中空间矢量按分时方式发生作用,在时间上构成一个空间矢量的序列,空间矢量的序列组织方式有多种,按照空间矢量的对称性分类,可分为两相开关换流与三相开关换流。下面对常用的序列做分析。

七段式发波:

以减少开关次数为目标,按基本矢量排序的分配原则选定为:在每次开关状态转换时,只改变其中一相的开关状态。并且对零矢量在时间上进行了平均分配,以使产生的 PWM 对称,从而有效地降低PWM的谐波分量。当 U4(100)切换至 U0(000)时,只需改变A 相上下一对切换开关,若由U4(100)切换至 U7(111)则需改变 B、C 相上下两对切换开关,增加了一倍的切换损失。因此要改变电压向量 U4(100)、U2(010)、U1(001)的大小,需配合零电压向量 U0(000),而要改变 U6(110)、U3(011)、U5(100),需配合零电压向量 U7(111)。这样通过在不同区间内安排不同的开关切换顺序,就可以获得对称的输出波形。

图片

Mathcad仿真数据:

图片

图片

五段式发波:

7段式发波对称,谐波含量较小,但式每个开关周期有6次开关切换,为了进一步减少开关次数,采用每相开关在每个扇区状态维持不变的序列安排,使得每个开关周期只有3次开关切换,但是会增大谐波含量。

图片

图片

图片

通过扇区内发波分析,可以发现这些结果可进一步简化计算结果:

图片

生成开关控制信号:

上面计算出的SaSbSC送入DSP定时器寄存器,算法依然不能自行判断何时改变开关状态。将这三个时间变量与三角波比较后算法就能精确的在指定的时间改变开关状态。

图片


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    策略,比例控制和比例加微分控制(PD)。 若系统采用PD控制器来控制电机,则电机的驱动电压U为: 2.3、电动助力转向系统数学模型 式中,T0为转向阻力矩,Mr为主......
    永磁同步电机控制系统仿真—逆变器模型(1);电路拓扑式建模与数学建模 Q 在讨论逆变器模型之前,我们需要先明确一个问题,什么是电路拓扑式建模(简称拓扑建模)和数学建模? 电力电子系统的拓扑建模,从大......
    此牵引力改变汽车的速度,直到其速度稳定在指定的速度为止。 数学模型: 1.汽车速度操纵机构位置变换器 汽车行驶速度控制系统的速度操纵机构变换器的作用,就是将操纵杆的位置转换为汽车期望行驶速度,操纵......
    占空比(SVPWM)。 为什么要变换坐标系呢,因为对于三相直流电机的数学模型,三相坐标系计算起来很复杂,但其实坐标轴是相对静止的,所以我们可以将三相坐标系变换为两相坐标系,以此......
    固体只需相对平滑的样品表面并且满足长宽至少为探头直径的两倍即可。 3、探头采用双螺旋线的结构进行设计,结合专属数学模型,利用核心算法对探头上采集的数据进行分析计算。 4、主机的控制系统使用了ARM微处理器,运算速度比传统的微处理器快,提高了系统......
    较多,耦合度较高计算较为复杂,abc坐标系转换到α—β坐标系统后,模型参数仍存在随时间变化的问题,这些参数的变化使得控制系统设计变得复杂,因此,为了便于后期控制器的设计,通常选择同步旋转坐标系d—q坐标系下的数学模型进行电机模型......
    Control, VMC)和车辆动力学(Vehicle Dynamic Control)建模之间有着紧密的关系。车辆动力学建模是VMC系统的基础,通过建立车辆的数学模型,模拟车辆在各种工况下的动态行为,从而实现对车辆运动的精确控制......
    了BLDCM控制系统的仿真模型,并利用该模型,进行了控制系统的仿真试验,结果表明,通过该仿真模型验证了数学模型的有效性及控制系统的合理性。 2.无数直流电机的总体设计 BLDCM由定子三相绕组、永磁......
    控制方式调制产生PWM信号,以控制逆变器产生合适的电压和电流驱动电机转动。直接转矩控制摒弃了复杂的空间矢量坐标运算,电机的数学模型得到了简化,控制结构也简单,对电机参数变化不敏感,控制系统......
    开环是什么意思? 给所使用的电机装置设速度检出器(PG),将实际转速反馈给控制装置进行控制的,称为“闭环 ”,不用PG运转的就叫作“开环”。通用变频器多为开环方式,也有的机利用选件可进行PG反馈.无速度传感器闭环控制方式是根据建立的数学模型......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>