MOS管开通过程的米勒效应及应对措施

发布时间:2023-02-14  

在现在使用的MOS和IGBT等开关电源应用中,所需要面对一个常见的问题 — 米勒效应,本文将主要介绍MOS管在开通过程中米勒效应的成因、表现、危害及应对方法。

本文引用地址:


在现在使用的MOS和IGBT等开关电源应用中,所需要面对一个常见的问题 — 米勒效应,本文将主要介绍MOS管在开通过程中米勒效应的成因、表现、危害及应对方法。


  1. 米勒效应的成因


在讲这个之前需要先回顾下MOS的开通过程。


MOS管开通过程的米勒效应及应对措施

图一


从t1开始时刻,Vgs开始上升的时候,Vds和Id保持不变,这个过程中驱动电流ig为Cgs充电,Vgs上升。一直到t1结束,Vgs上升到Vg(th),也就是门极开启电压时候。在整个t1时间,MOS处于截止区。


从t2时刻开始,MOS就开始导通了,标志就是Id开始上升。电流从原来的电感出来流经二极管,现在开始要慢慢的向MOS换流。所以MOS的漏极电流Id在逐渐上升,二极管的电流在逐渐减小,但是电流之和始终等于电感电流,在开关开通的这个过程中可以认为电感电流是没有变化的。这个时间段内驱动电流仍然是为Cgs充电。在t2这段时间里,Id只是在线性上升,到t2结束时刻,Id上升到电感电流,换流结束。在电感电流上升的这个过程中Vds会稍微有一些下降,这是因为下降的di/dt在杂散电感上面形成一些压降,所以侧到的Vds会有一些下降。从t2开始时刻,MOS进入了饱和区。


在Id上升至最大(t2结束),即刻就进入了米勒平台时期。米勒平台就是Vgs在一段时间几乎维持不动的一个平台。前面说了,从t2开始时刻,MOS进入了饱和区,在饱和有转移特性:Id=Vgs*Gm。其中Gm是跨导。那么可以看出,只要Id不变Vgs就不变。Id在上升到最大值以后,也就是MOS和二极管换流结束后,Id就等于电感电流了,而此时又处于饱和区,所以Vgs就会维持不变,也就是维持米勒平台的电压。


从t2结束驱动的电流ig为Cgd充电(从另一个方向来说,可以叫放电),然后Vds就开始下降了。由于超级结在开通伊始的纵向扩散,比较小的GD电容,所以Vds一开始下降的比较快,纵向扩散完成后,变成横向扩散,GD电容变大,所以Vds下降的斜率变缓。那么米勒平台什么时候结束呢?米勒平台要想结束,必须进入线性区,不然继续在饱和区待下去,就会被和Id“绑”在一起,所以当MOS进入线性区之后,米勒平台结束。根据MOS的特性曲线,在Vds下降到等于此时的Vgs-Vg(th)这个值的时候,MOS进入线性区(t4开始时刻)。此时Vds的大小会由Rds*Id决定,驱动电流开始继续为Cgs和Cgd充电。而Vgs也开始恢复继续上升,MOS基本导通。


下面来详细说明下米勒平台形成的过程。


MOS管开通过程的米勒效应及应对措施

图二


在t2开始的时刻,处在饱和区的MOS转移特性公式,真实为Ich=Vgs*Gm,Ich为沟道电流,即上图中DS之间的电流。于是当驱动电流为Cgs充一点电,Vgs增加Δvgs,那么Ich增加Δich,而Ich增加的部分只能由Cds放电提供,(因为从电路中的来的那部分电流已经固定),于是Cds放电为Ich提供增加的电流。于是Vds就下降,也就是Vgd会下降,那么Δigd=Cgd*ΔVgd/Δt,igd就会增加,然后igs就会下降,所以Vgs就不能增加,只能这样动态的维持在米勒平台附近。可以看出这是一个负反馈的过程。所以Cgd也叫反馈电容。


2. 米勒电容在MOS开通过程中带来的问题


1. dv/dt 限制

当MOS管 DS两端电压迅速上升的时,通过Cgd所产生电流在MOS管GS两端寄生电阻上产生的压降大于开启电压时,会使MOS打开。所以在使用前需要根据实际情况计算相关参数,以保证在各类工况下都不出来MOS误打开的情况。这里面又分三种情况:


(1)可以看到通过Cgs和Cgd两个电容分压可得到GS两端电压


MOS管开通过程的米勒效应及应对措施

图三


MOS管开通过程的米勒效应及应对措施


在低压应用中一般由这个等式即可判定MOS是否会存在误打开的动作


(2)高压应用中还需要确定MOS的本身dv/dt 极限。这一特性对应于在外部驱动阻抗为零的理想情况下,设备在不开机的情况下所能承受的最大dv/dt。



MOS管开通过程的米勒效应及应对措施


这个公式所计算得到的结果在评估MOS在特定应用中的适应性很重要。


(3)实际应用中,还需要考虑驱动的寄生电阻及所外加的驱动电阻。


MOS管开通过程的米勒效应及应对措施


需要注意的是MOS管的开启电压是一个与温度正相关的参数,在计算上述公式时要考虑到开启电压随温度的偏移量。


2. 米勒振荡


我们知道,MOS管的输入与输出是相位相反,恰好180度,也就是等效于一个反相器,也可以理解为一个反相工作的运放,所以当输入电阻较大时,开关速度比较缓慢,图二中Cgd这颗积分电容影响不明显,但是当开关速度比较高,而且VDD供电电压比较高,比如310V下,通过Cgd的电流比较大,强的积分很容易引起振荡,这个振荡叫米勒振荡。

如下图中蓝色线


MOS管开通过程的米勒效应及应对措施

图六


因为MOS管的反馈引入了电容,当这个电容足够大,并且前段信号变化快,后端供电电压高,三者结合起来,就会引起积分过充振荡,要想解决解决这个米勒振荡,在频率和电压不变的情况下,一般可以提高MOS管的驱动电阻,减缓开关的边沿速度,其次比较有效的方式是增加Cgs电容。在条件允许的情况下,可以在Cds之间并上低内阻抗冲击的小电容,或者用RC电路来做吸收电路。

一般Si MOS的Vgs电压工作范围为正负20V,超过这个电压,栅极容易被击穿,所以在米勒振荡严重的场合,需要加限压的稳压二极管。但更严重的问题来自米勒振荡容易引起MOS管的二次开关或多次开关引起的MOS损耗加剧,最终可能烧毁。

3. 米勒振荡的应对

  1. 减缓驱动强度


MOS管开通过程的米勒效应及应对措施


a. 提高MOS管G极的输入串联电阻,一般该电阻阻值在1~100欧姆之间,具体值看MOS管的特性和工作频率,阻值越大,开关速度越缓。

b. 在MOS管GS之间并联瓷片电容,一般容量在1nF~10nF附近,看实际需求。调节电阻电容值,提高电阻和电容,降低充放电时间,减缓开关的边沿速度,这个方式特别适合于硬开关电路,消除硬开关引起的振荡,但是这两种措施都会引起MOS损耗的上升,取值需要结合实际电路应用。

2. 加强关闭能力

a. 差异化充放电速度,采用二极管加速放电速度


MOS管开通过程的米勒效应及应对措施


b. 当第一种方案不足时,关闭时直接把GS短路


MOS管开通过程的米勒效应及应对措施


米勒振荡还有可能是MOS源极对地寄生电感偏大,在MOS进入开启状态从二极管换流至MOS的瞬态电流在MOS源极对地的寄生电感上产生一个压降,所以在PCB布板的要遵守开关电源布板的基本要求。

(来源:Arrow Solution)


文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    线性区之后,米勒平台结束。根据MOS的特性曲线,在Vds下降到等于此时的Vgs-Vg(th)这个值的时候,MOS进入线性区(t4开始时刻)。此时Vds的大小会由Rds*Id决定,驱动电流开始继续为Cgs和......
    这个过程与MOS管的过程略有不同,同时栅极电压也达到了米勒平台电压。 第3阶段:栅极电流对Cge和Cgc电容充电,这个时候VGE是完全不变的,值得我们注意的是Vce的变化非常快。 第4阶段:栅极......
    流过电流,同时CE电压下降。CE电压下降过程中,门极电压不再上升,而是维持在一定的电压平台上,称为米勒平台。在这期间,CE电压完全降至0V。随后GE电压继续上升至15V,至此整个开通过程完成。 IGBT......
    栅极电容形成 RC 时间常数,因此需要提供足够的峰值栅极电流以确保栅极驱动信号的快速上升沿。 t1→t2:当 VGS 从 VTH 上升到米勒平台区域时,由于 RDS 通道电阻在低 VGS 时没......
    IGBT重要的动态参数解析(2024-11-11 14:18:47)
    电容: 输入电容Cies和米勒电容Cres对栅极的驱动特性影响较大,其中,米勒电容还是驱动电压Vge 米勒平台 的始作俑者,如下......
    电路时必须考虑这些影响,包括导通电阻、栅极电荷(米勒平台)和过电流(DESAT)保护。  二  导通电阻 在低VGS时,一些SiC器件的导通电阻与结温特性之间的关系曲线看起来是抛物线*(由于内部器件特性的组合)。(*这适......
    进一步打开mos管。同理我们都知道电容充电时的电流要求是比较大的,如果此时我们的栅极不能提供足够的电流能量,那么VGS处于米勒平台的时间将会特别长,显然这不是我们想要的结果。如下图 所以为了使mos管快......
    电流的简化时序图。t1 到 t2 这段时间是门 极驱动的源电流(IO+)从零开始到峰值电流的建立时间。在 t3 时刻,门极电压达到米勒平台,源电流开始给 MOSFET 的米勒电容充电。在 t4 时刻,米勒......
    直到Vgs等于输入电压10V。 图中Vgs输入电压保持不变即Qgd阶段,输入电压不给Cgs充电,而是给Cgd米勒电容充电。这是MOS管固有的转移特性。这期间不变的电压也叫平台电压。 此时,MOS管的......
    /MOSFET门极驱动器提供5 kV的电隔离,可配置为双下桥、双上桥或半桥工作。 NCD57252采用小型SOIC-16宽体封装,接受逻辑电平输入(3.3 V、5 V和15 V)。该高电流器件(在米勒平台......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>