米勒电容、米勒效应和器件与系统设计对策

发布时间:2023-03-06  

搞电力电子的同学想必经常被“”这个词困扰。增加开关延时不说,还可能引起寄生导通,增加器件损耗。那么是如何产生的,我们又该如何应对呢?

本文引用地址:


我们先来看IGBT开通时的典型波形:


1677665161327992.png


上图中,绿色的波形是GE电压,蓝色的波形是CE电压,红色的波形是集电极电流IC。在开通过程中,GE的电压从-10V开始上升,上升至阈值电压后,IGBT导通,开始流过电流,同时CE电压下降。CE电压下降过程中,门极电压不再上升,而是维持在一定的电压平台上,称为米勒平台。在这期间,CE电压完全降至0V。随后GE电压继续上升至15V,至此整个开通过程完成。


IGBT门极电压在开关过程中展现出来的平台称为米勒平台。导致米勒平台的“罪魁祸首”是IGBT 集电极-门极之间寄生电容Cgc。由于半导体设计结构, IGBT内部存在各类寄生电容,如下图所示,可分为栅极-发射极电容、栅极-集电极电容和集电极-发射极电容。其中门极与集电极(or漏极)之间的电容就是米勒电容,又叫转移电容,即下图中的C2、C5。


1677665148520313.png

IGBT的寄生电容


在IGBT桥式应用中,如果关断没有负压,或者开关速度过快,米勒电容可能会导致寄生导通。如下图,两个IGBT组成一个半桥,上下管交替开通关断,两个管子不允许同时导通,否则不仅会增加系统损耗,还可能导致失效。当下管IGBT开通时,负载电流从下管流过,CE间电压从母线电压降至饱和电压Vcesat。而此时,上管IGBT必须关断,CE间电压从饱和电压跳变到母线电压。上管电压的从低到高跳变,产生很大的电压变化率dv/dt。dv/dt作用在上管米勒电容上,产生位移电流。位移电流经过门极电阻回到地,引起门极电压抬升。如果门极电压高于阈值电压Vth,则上管的IGBT会再次导通,并流过电流,增加系统损耗。


1677665132745486.png


怎么判断是否发生了寄生导通呢?


一个实验帮助理解和观察寄生导通。在双脉冲测试平台中,让上管在0V和-5V的关断电压条件下,分别作两次测试,观察下管的开通波形。当Vgs=-5V时,下管开通电流的包裹面积,明显小于当Vge=0V时的电流包裹面积,充分说明,当Vge=0V时,有额外的电流参与了开通过程。这个电流,就是来自于上管的寄生导通。


1677665120880810.png


如何避免寄生导通?


从器件角度看,有几个重要的参数:


1 低米勒电容 -越小,相同的dv/dt下,位移电流越小。这一点,IGBT7和CoolSiC™ MOSFET尤其出色。以FP25R12W1T7为例,它的米勒电容Crss仅有0.017nF,相比同电流IGBT4的0.05nF,减少了近2/3。


2 高阈值电压 - 阈值电压如果太低,米勒效应感应出的寄生电压就很容易超过阈值,从而引起寄生导通。这一条对于IGBT不是问题,绝大部分IGBT的阈值在5~6V之间,有一定的抗寄生导通能力。但SiC MOSFET不一样,因为SiC MOSFET沟道迁移率比较低,大部分SiC MOSFET会把阈值做得比较低(2~4V),这样虽然可以提高门极有效过驱动电压Vgs-Vth,进而降低SiC MOSFET的通态电阻,但是米勒效应引起的门极电压抬升就很容易超过阈值电压,这一现象在高温时尤其明显,因为阈值电压随温度上升而下降。CoolSiC™ MOSFET因为采用了沟槽型结构,垂直晶面的沟道迁移率较高,所以可以把阈值做得高一点,而不影响其通态压降。CoolSiC™ MOSFET阈值电压典型值 为4.5V,再加上极低的米勒电容,从而具有非常强的抗寄生导通能力。


从驱动的角度看:


1 使用负压关断。如果米勒电容引起的门极电压抬升是7V,叠加在-5V的关断电压条件下,门极实际电压为2V,小于阈值电压,不会发生寄生导通。而如果0V关断的话,可想而知门极实际电压就是7V,寄生导通将无法避免。一般电流越大,需要的负压越深。


2 使用带米勒钳位的驱动芯片。米勒钳位的原理是,在IGBT处于关断状态(Vg-VEE低于2V)时,直接用一个低阻通路(MOSFET)将IGBT的门极连接到地,当位移电流出现时,将直接通过MOSFET流到地,不流过门极电阻,自然也就不会抬升门极电压,从而避免了寄生导通。


1677665105906844.png

带米勒钳位的驱动芯片内部框图


25.png

典型应用电路


3 开通与关断电阻分开。寄生导通发生时,位移电流流过关断电阻,从而抬升了门极电压。如果减小关断的门极电阻,则可以降低门极感应电压,从而减少寄生导通的风险。


总 结


总结一下,功率器件中的米勒效应来自于IGBT或MOSFET 结构中的门极—集电极/漏极之间寄生电容Cgc 或Cgd。米勒电容可能会引起寄生导通,从而导致系统损耗上升。抑制米勒寄生导通,要注意选择具有较低米勒电容,或者是较高阈值电压的器件,驱动设计上可以选择负压驱动、米勒钳位、开通及关断电阻分开等多种方式。


参考阅读


IGBT驱动电路中的钳位电路


分立式CoolSiC™MOSFET的寄生导通行为研究


IGBT门极驱动到底要不要负压


来源:,赵佳

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    一个由于经过开通过程会产生几kV/us的dv/dt。这将使该管经由Cgc电容产生电流灌入门极,可能引起门极电压的抬升进而导致器件开通。因为Cgc又被称为米勒电容,所以我们称这样的开通为米勒开通。而把能泻放这一分布电流的电路称为米勒钳位电路......
    越广泛应用于新能源汽车、工业、交通、医疗等领域。在桥式电路中,碳化硅MOSFET具有更快的开关速度会使得串扰行为更容易发生,也会更容易发生误开通现象,所以如何有效可靠地驱动碳化硅MOSFET至关重要。我们发现,如果在驱动电路中使用米勒钳位......
    移电流出现时,将直接通过MOSFET流到地,不流过门极电阻,自然也就不会抬升门极电压,从而避免了寄生导通。 带米勒钳位的驱动芯片内部框图 典型应用电路 3 开通与关断电阻分开。寄生导通发生时,位移......
    消隐时间只能靠调节外接电容大小来调整。对于两电平关断功能来说,两电平持续的时间和电位需要靠外接电容和齐纳二极管来实现。而软关断电流及米勒钳位电流对于某一颗芯片来说也是固定的,无法调整。这样......
    品有两种不同的输出配置。第一种配置是提供独立的输出引脚,可使用专用的栅极电阻独立优化通断时间。第二种配置适用于高频硬开关,只有一个输出引脚和有源米勒钳位电路米勒钳位用于限制SiC MOSFET栅极-源极......
    品有两种不同的输出配置。第一种配置是提供独立的输出引脚,可使用专用的栅极电阻独立优化通断时间。第二种配置适用于高频硬开关,只有一个输出引脚和有源米勒钳位电路米勒钳位用于限制SiC MOSFET栅极-源极......
    . SiC MOSFET负压驱动防止误开通 2.2.2 米勒钳位 另一种常见的防止SiC MOSFET误开通的方式是搭建米勒钳位电路或使用具有米勒钳位功能的芯片,如的单通道隔离驱动芯片UCC5350......
    驱动误导通的方法 1.门极电阻、电容法 2 米勒钳位法. 3 负压驱动法 总结 ......
    应用框图 保护功能◆ 快速过流和短路保护,可选 DESAT 阈值电压9V、6.5V,OC 阈值电压 0.7V◆ 集成故障时的软关断功能,软关断电流 400mA,900mA 可选◆ 集成米勒钳位功能,钳位电......
    位于驱动器 IC 内。使用内部钳位可减少 构建电路所需的组件,但其位置可能远离电源开关。米 勒电流的路径中可能具有寄生电阻和电感 Rp 和 Lp ,如 图 35 所示。如果该电流足够大,则米勒钳位......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>