资讯
汽车电子EMC电磁兼容的重要性(2024-06-27)
兼容性测试,采用了综合改进措施,试验结果可以比较各种措施在实车运用中的效果。
什么是电磁波?
电磁波(Electromagnetic wave)是由同相且互相垂直的电场与磁场在空间中衍生发射的振荡粒子......
科学家首次证明通过超导体可控制磁体自旋波(2023-10-30)
相互作用的自旋体系由于各种激发作用引起的集体运动。
在量子力学中,自旋(英语:Spin)是粒子所具有的内禀性质,其运算规则类似于经典力学的角动量,并因此产生一个磁场。
这项突破性研究发表在《科学》期刊上。
理论......
辐射测试,一般垂直方向都比水平高,为什么呢?(2024-04-10)
天线垂直极化与水平极化的概念、原理做下阐述:
(1)波是什么
在数学上,任何一个沿某一方向运动的函数形状都可以认为是一个波,简单的讲就是振动的传播。每种波有相应的量子,电磁波──光子、引力波──引力子。有些波的传播需要介质,比如......
电子不仅是粒子,而且是波——“魔角”石墨烯超导性成因揭示(2023-02-16)
电子不仅是粒子,而且是波——“魔角”石墨烯超导性成因揭示;据最新发表在《自然》杂志上的一项研究,美国俄亥俄州立大学领衔团队发现的新证据显示,当石墨烯偏转到某个精确角度时,可成为超导体,传输......
油库雷达液位计设计选型(2023-04-04)
液位要杜绝安装储罐顶部的中心处,这是因为天线发射的电磁波是在罐内整个空间传播的,罐壁和罐底反射回来的电磁波会集中在中心处,形成很大的干扰,会淹没正常的从介质表面反射回来的电磁波。
采用喇叭天线雷达液位计,天线......
功率放大器在电感式传感器金属颗粒材质识别中的应用(2023-09-07)
过程:
01
实验选取5种材质的球形颗粒作为实验颗粒,进行金属颗粒复数域信号检测实验;
02
三线圈传感器置于金属罩内以屏蔽外界电磁干扰。信号发生器输出的正弦电压作为激励电压。功率放大器的参数设定为10倍......
光速要如何测量呢? 微波炉与热像仪的另类应用(2023-03-13)
了这个现象,毕竟电磁波是以立体形状在传递与反射的,并不像课本里的叙述,完全是直线的入射波反射波这么好理解。真的要理解电磁波的立体传递方式,除了要理解电磁波的公式之外,再来就是可以靠软件仿真的方式来理解,你就......
特斯拉吃“回头草”,毫米波雷达再添新“爆点”(2023-02-23)
作在毫米波波段(millimeter wave)探测的雷达。通常毫米波是指30GHz~300GHz频域(波长为1mm~10mm)的电磁波。毫米波雷达技术已经相对成熟,特别在军事层面。当前制约车规级毫米波雷达的,主要......
5G毫米波独立组网性能获验证,毫米波产业链有望持续爆发(2022-11-27)
于6GHz以下的频段,毫米波具有大带宽、低空口时延和灵活弹性空口配置等独特优势,可满足未来无线通信对系统容量、传输速率和差异化应用v等方面的需求。
毫米波是指波长为1毫米到10毫米的电磁波。从声......
5G时代将至,手机辐射问题还可以忽略吗?(2019-12-02)
义词,电磁波,就是电磁辐射,简称“辐射”,我们平时谈的“辐射”其实就是指电磁波,电磁波是物体电磁状态变化的传导。
5G的频谱要远高于4G,目前三大运营商的4G基站主要集中1.8GHZ附近,按照5G频谱......
自动驾驶系统中的传感器与时序闭环应用(2024-01-04)
听的方式,主要是借助机械波。超声波是一种机械波,可以强化近距离检测的能力。 从传感器底层的物理特性上看,电磁波(cameraRadarLidar)加机械波(超声波雷达)的搭配是合理的。多波段互相配合,可满......
精华|直击毫米波在超高速无线通讯中的应用、设计挑战(2017-01-01)
波领域的先驱者之一,从五六年前就开始在各大会议和期刊上发表毫米波电路和芯片相关的文章,直到最近更是已经开始做太赫兹电路。
【什么是毫米波】
按照标准定义,毫米波是指在真空中波长在1毫米到10毫米之间的电磁波......
芝麻粒大小的高精度毫米波雷达,解决功耗和噪声问题(2023-10-18)
。
新型毫米波雷达能效高且生产成本低
毫米波雷达面临的挑战
毫米波是介于微波和红外线之间的电磁波,波长为1~10......
自动驾驶定位技术-粒子滤波实践案例解析(2023-05-18)
权重
重采样步骤: 在重采样期间,我们将重采样 m 次(m 是0到 length_of_particleArray的范围)绘制粒子 i (i 是粒子index)与其......
emi多级滤波好吗 音响emi滤波器作用是什么(2024-05-06)
emi多级滤波好吗 音响emi滤波器作用是什么; emi多级滤波好吗
EMI(Electromagnetic Interference)多级滤波是一种常用的电磁干扰滤波技术,用于减少电子设备之间的电磁......
如何使用频谱分析仪来侦测微波炉泄漏的功率(2023-03-14)
如何使用频谱分析仪来侦测微波炉泄漏的功率;大家使用微波炉的时候是不是都会站得远远的? 这不外乎就是怕自己的身体被微波炉电磁波 照到,影响身体健康,其实阿信助教也不知道微波到底会不会影响身体健康,因为......
英国科学家研制出超薄二维表面材料,有望增强 6G 卫星通信能力(2024-09-18)
)超表面材料,能对卫星最常用的电磁波进行操纵和转换,有望提升 6G 卫星在通信、高速数据传输和遥感方面的能力。相关论文已发表于新一期《通信工程》。
▲ 图源:格拉斯哥大学
该团队通过这种突破性的 2D......
变频器的工作原理和作用 变频器的接线方法及其注意事项(2024-05-06)
线头可能造成异常,失灵和故障,必须始终保持变频器清洁。在控制台上打孔时,要注意不要使碎片粉末等进入变频器中。
2、在端子+,PR间,不要连接除建议的制动电阻器选件以外的东西,或绝对不要短路。
3、电磁波干扰,变频......
某车载电机控制器EMC整改案例(2024-05-11)
的开关频率为16KHz。初步分析可以得到以下几点:
(1)EMI可分为传导干扰和辐射干扰,传导干扰是指干扰能量沿着电缆以干扰电压的形式传播,辐射干扰是指干扰能量以电磁波......
示波器探头在医疗设备测试的应用(2023-03-14)
客户的老款示波器屏幕太小,无法做FFT观测信号的高次谐波,也无法连接高压探头和电流探头,对设备的输出功率进行准确的测量。
高频电磁波是一种高度精确的靶向性治疗技术,已经成为医疗行业不可或缺的新的治疗方法,具有......
半导体SERS基底非吸附分析物检测获进展(2023-03-07)
应用前景的关键。
在该项工作中,研究团队设计并制备了具有次级结构的ZnO纳米粒子,通过在其外表面包覆ZIF-8壳层,提升了ZnO纳米粒子的电磁增强能力,实现了6种非吸附性有机化合物(VOCs......
一文读懂雷达液位计的原理(2023-03-31)
一文读懂雷达液位计的原理;雷达液位计利用电磁波经天线向被探测容器的液面发射,当电磁波碰到液面后反射回来,仪表检测出发射波及回波的时差,从而计算出液面的高度。被测介质导电性越好或介电常数越大,回波......
一场“国产光刻机”的奇葩说(2022-12-29)
认为波长量级以上的区域就不存在了。
(来源见水印)
更为神奇的是,虽然表面等离子体波是由其他电磁波激发的,但是......
深入解读毫米波雷达原理与应用(2024-09-25)
无线电来发现目标和测量距离。
随着技术的发展,雷达的应用和功能早已超脱了探测和测距这个基本范围,比如测速,测角,目标识别,目标成像,战场侦察等等。但是只要用到电磁波来进行探测的技术,我们依然称为雷达。
所以雷达,它不姓雷,他姓......
2.4G无线传输原理简介---麦克风模块(2023-10-09)
快带大等优点。
那2.4G无线模块的工作原理是怎样的呢?无线传输的目的在于解放自己,用无线技术取代有线连接。怎么取代?简单来说2.4G无线传输通过接受模块接受音源处理发射电磁波,接受模块接受被发射模块辐射到空中的电磁波......
iPhone 辐射超标了?法国、韩国或暂停进口和销售(2023-09-19)
超标的问题愈演愈烈,苹果这次要面对的问题,又多了一个。
苹果再陷漩涡
法国是最先出手的。在9月13日苹果2023秋季新品发布会前一天,法国政府宣布,因电磁波辐射值超过欧盟标准,他们将禁止在法国销售iPhone 12......
索尼半导体推出可搜集电磁能量的能量收集系统(2023-09-08 14:31)
块采用了索尼半导体在调谐器开发过程中积累的技术,可高效地利用电磁波发电。例如,这项技术可以利用工厂内的机器人、办公室的显示器和照明、商店和家庭的显示器和电视等产生的恒定电磁波......
索尼半导体推出可搜集电磁能量的能量收集系统(2023-09-08)
块采用了索尼半导体在调谐器开发过程中积累的技术,可高效地利用电磁波发电。例如,这项技术可以利用工厂内的机器人、办公室的显示器和照明、商店和家庭的显示器和电视等产生的恒定电磁波......
特斯拉汽车的感应钥匙卡是什么 特斯拉感应钥匙卡怎么感应呢(2024-03-08)
感应和射频识别技术。当用户携带钥匙卡靠近车辆时,车载感应系统的天线会发射出一定频率的电磁波。
这些电磁波在空间中传播,当遇到钥匙卡时,会被其内部微型芯片接收。芯片内部电路设计特殊,可将接收到的电磁波......
音响有辐射吗_如何预防音响的辐射(2024-01-09)
音响有辐射吗_如何预防音响的辐射; 各种各样的电磁波无时无刻都在我们的身边盘旋着,随时都有可能损害我们的健康。只要电器处于操作使用的状态下,它的周围就都存在着电磁场或者电磁辐射。比如音响辐射,那么......
如何对汽车电子中的EMC进行测试?有哪些方法?(2024-08-01)
是各种测试方法的详细介绍:
2.1 辐射发射测试
辐射发射测试主要用于评估汽车电子设备在运行过程中产生的电磁辐射对其他电子设备的影响。测试过程中,需要将待测设备放置在一个电磁波屏蔽室中,通过测量室内的电磁......
光谱分析仪测金属元素原理(2023-04-26)
放出多余的能量,这种能量是以一定波长的电磁波的形式辐射出去的,其辐射的能量可用下式表示:(1)E2、E1分别为高能级、低能级的能量,h为普朗克(Planck)常数;v及λ分别为所发射电磁波的频率及波长,c为光......
线圈感应式无线充电系统设计方案(2024-07-22)
心绕线后对向紧贴后接上市电就可以感应传电,但距离略为分开后感应效果就消失,这是因为在市电60Hz下,电磁波传递会随着距离增加能量快速衰退。
在现今的应用中,由于装置本身需要有外壳包装,发射端加上接收端的外壳厚度至少从3mm起算,早期......
实力打脸:量子隐形传输与“瞬间移动”毫无关系(2016-09-30)
才能使这种“时钟类比”法成为可能?
这的确有点难。你需要对量子态有些了解,才能更好地理解量子隐形传输。以单个光子为例。光子实质上是一种电磁波,因而,光子能够被“极化”,其电场将呈现水平或垂直分布。在神......
新技术将太赫兹波放大3万多倍,有望为6G通信频率商业化带来变革(2023-12-27)
谐振器,将太赫兹电磁波放大3万倍以上。这一突破有望为6G通信频率的商业化带来变革。相关论文发表于最新一期《纳米快报》杂志。
研究示意图图片来源:《纳米快报》
以前,即使利用超级计算机处理,设计......
新技术将太赫兹波放大3万多倍,有望为6G通信频率商业化带来变革(2023-12-27 15:20)
谐振器,将太赫兹电磁波放大3万倍以上。这一突破有望为6G通信频率的商业化带来变革。相关论文发表于最新一期《纳米快报》杂志。
研究示意图图片来源:《纳米快报》
以前,即使利用超级计算机处理,设计......
“白菜化”的有源相控阵雷达(2024-01-12)
先来简单解释一下“相控阵”:所谓“相控阵”雷达就是“相位控制雷达”的简称,它是用天线扫描方式不同来区别出的一类雷达,与其相对应的是机械扫描雷达。顾名思义,相位控制就是通过控制电磁波的相位差,利用电磁波的干涉现象来控制电磁波......
汽车内电磁干扰现象与减小汽车对无线电干扰的措施(2023-06-19)
次级产生高压脉冲使火花塞放电,点燃发动机燃油混合气作功。当线圈初级回路通断变化过程时,初级绕组会产生瞬变电压,次级绕组产生高电压使火花塞放电,残余能量形成高频电磁波辐射到空间中。初级......
磁环消除伺服电机干扰(2024-05-13)
它们的运行不稳定或失效。因此,我们需要采取一些措施来减少伺服电机产生的电磁场,从而消除干扰。一个有效的方法是磁环消除。磁环是一种能量吸收器,它可以从电子设备中吸收电磁波并将其转化为热能。通过......
聊一聊无线充电那些事儿(2023-02-17)
空充电,就是要大大延长这个距离。隔空充电,是用天线把电路中的电流转化为空间中的电磁波,即把能量从设备里辐射到空间中,再在一定距离之外,用天线把空间中的电磁波转化为电路中的电流,实现能量的接收。
第二,我们......
光量子比特的存储保真度达95.2%:为大规模光量子网络铺平道路(2022-12-15)
使用镱的量子位来控制晶体中多个钒原子的核自旋状态。研究成果于2月16日发表在《自然》(Nature)期刊上。
光子回波是原子与一系列电磁波脉冲相互作用时发出的相干辐射,是存储和操纵光的有力工具。光子......
一文搞清楚EMI、EMS以及EMC的区别(2024-10-06 11:55:33)
是“电磁干扰”,是指电子设备(干扰源)通过电磁波对其他电子设备产生干扰的现象。例如当我们看电视的时候,旁边有人使用电吹风或电剃须刀之类的家用电器,电视屏幕上会出现的雪花噪点;电饭锅煮不熟米饭;关闭......
深耕毫米波相控阵技术,帮柱成果已实现规模性推广应用(2023-09-13 16:07)
深耕毫米波相控阵技术,帮柱成果已实现规模性推广应用;无线通信是基于电磁波所进行的通信技术。为了使不同的通信设备传输互不干扰,国际电信联盟等无线电管理机构对无线频谱的使用做了划分,将不......
雷达水位计怎么调试水位(2023-04-12)
长
维护方便,操作简单
雷达水位计怎么调试水位?
雷达传感器的天线以波束的形式发射电磁波信号,调频连续波技术的液位计在雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可......
基于8002B的电磁信号放大检波(2023-02-14)
基于8002B的电磁信号放大检波;在智能车竞赛电磁导航方案中, 对来自工字型电感检测到的20kHz导航信号进行放大检波是关键。 往届车模作品方案中,同学们常常使用单电源轨到轨运放电路对来自 电感......
基础知识之无线供电(2024-03-29)
高电压的变压器厚度变大是其缺点。
电波接收方式 在送电侧将电流转换为电磁波,而受电侧的天线接收该电磁波,在整流电路中将其转换为直流电流,是利用电磁场进行供电的方式。 具有数米的长距离传输,但效率低是其缺点。
三、什么叫电磁......
指南EMC整改学不会?看看行业大佬怎么说!(2024-10-22 21:30:05)
等元件的工作频率都是固定的。
第二步:滤波一般分为电容滤波、RC 滤波和 LC 滤波等;
第三步:吸收电磁波方法有电路串联磁珠法、绕穿......
Kemet推出用于Wi-Fi频段和超高频中5G频段的KEMET FLEX SUPPRESSOR(2023-07-27)
种由微米级磁性材料粉末在聚合物基体中混合和分散而成的复合板材。这些板材可以有效抑制电磁波和共振,或提高磁通的收敛性,并可切割成多种形状和大小。
KEMET......
艾博康推出一系列超宽频段天线(2023-10-23)
带宽,可在3.3至8.2 GHz的应用中提供高效电磁波辐射,从而降低功耗并延长电池续航时间。可取代多个窄带天线,同时......
变频器干扰处理办法有哪些?(2023-12-26)
变频器干扰的原因和类型变频器干扰问题是由于变频器本身的工作特点产生的,主要包括电磁辐射干扰和电磁传导干扰两种类型。电磁辐射干扰是指变频器的工作过程中,产生的高频电磁波通过空气传播,影响周围设备的正常工作。电磁传导干扰是指变频器的工作过程中,高频电磁波通过导线、电缆......
相关企业
;深圳市利丰达展贸科技有限公司;;1、电磁吸波材料是专业用于GPS、手机、电脑、电子标签(RFID)等无线接收,发射电子产品。产品主要是对有害电磁波起到吸收和抑制作用,不会让有害电磁波
;深圳吸波王防辐射科技有限公司;;深圳市吸波王防辐射科技有限公司专业从事电磁波吸收材料的研究,自主研发的吸波材料主要是利用电磁能量转换原理,吸波衰减电磁波。使其转换为无害的热能。从根源上衰减电磁波
;宜宾金宏电子厂;;复合型电磁波吸收材料,广泛用于雷达技术、航空航天航海技术、微波通讯技术及电子对抗、电磁兼容领域中作吸波屏蔽,消振和抗电磁干扰。我厂研制并生产的复合型电磁波吸收材料,采用
;宜宾市金宏电子厂;;复合型电磁波吸收材料,广泛用于雷达技术、航空航天航海技术、微波通讯技术及电子对抗、电磁兼容领域中作吸波屏蔽,消振和抗电磁干扰。我厂研制并生产的复合型电磁波吸收材料,采用
;北京金富邦纤维科技有限公司;;北京金富邦纤维科技有限公司专门研发生产KOOLON各种不锈钢金属纤维产品,专供屏蔽电磁波辐射纺织品用材、微波、短波电磁波遮蔽材、车辆玻璃、食用玻璃器皿、模具
眩窗,相对磁电流场互驳推进系统等。统一场理论课题研发:通过对光量子的运动和能量的状态及特点的剖析,研发设计出一种无电磁波辐射的节能电缆;通过对运动及力场关系的剖析,设计了一个人造引力(重力)系统
;深圳市吸波王防辐射科技有限公司;;随着现代科学的发展,电磁辐射对环境的影响日益增大,寻找一种能抵挡并削弱电磁波辐射的材料──吸波材料,成为当今材料科学的一大课题。人类
;深圳市兆荣电磁材料有限公司;;深圳市兆荣电磁材料有限公司,是一家致力于解决电磁波杂讯干扰和电磁波金属干扰,的防干扰材料生产商,所有产品都呈柔性薄片形状,主要为了融入轻薄型智能电子的发展方向,以独
;深圳市吸波王防辐射材料科技有限公司;;随着现代科学的发展,电磁辐射对环境的影响日益增大,寻找一种能抵挡并削弱电磁波辐射的材料──吸波材料,成为当今材料科学的一大课题。人类
液晶显示器、液晶电视机等产品的光学用途。 三、EMC吸收电磁波材料 1. AMOSENSE 2. DAIDO STEEL 主要用于手机、数码相机、GPS、等离子TV等产品中吸收电磁波,抑制电磁