半导体SERS基底非吸附分析物检测获进展

发布时间:2023-03-07  

近日,华东理工大学化学与分子工程学院张金龙教授课题组和曹宵鸣教授课题组合作,在表面增强拉曼光谱(SERS)领域获得最新进展。相关研究以《提高半导体基底的电磁场增强能力用于非吸附分析物的SERS检测》为题发表于《化学》。

表面包覆结构示意。      华东理工大学供图

SERS具有超高检测灵敏度,因此在多个领域得到广泛应用。开发低成本、高活性SERS基底是该领域的研究热点。目前,常见的贵金属SERS基底主要通过电磁机制,增强分析物分子的SERS信号,因此具有极高的检测灵敏度,但其缺点是化学性质活泼、制备繁琐、价格昂贵。相较而言,半导体SERS基底化学性质稳定、制备方便、成本低廉,但绝大多数半导体SERS基底需要分析物分子吸附在半导体基底表面。因此,传统的半导体SERS技术只能用于极少分子(染料分子、硫醇分子等),这极大地限制了半导体SERS技术的应用。

近期,有研究报道发现,Ta2O5、ZnO和SnO2-NiOx等半导体SERS基底同样能通过电磁增强机制提升分析物分子的SERS信号。不同于化学增强机制,电磁增强机制可以作用于距SERS基底表面一定范围内的吸附性/非吸附性分析物分子。然而,相较于贵金属SERS基底,半导体SERS基底的电磁增强能力极弱。因此,提高半导体SERS基底的电磁增强能力是拓展半导体SERS技术应用前景的关键。

在该项工作中,研究团队设计并制备了具有次级结构的ZnO纳米粒子,通过在其外表面包覆ZIF-8壳层,提升了ZnO纳米粒子的电磁增强能力,实现了6种非吸附性有机化合物(VOCs)的低浓度检测,检测极限可与贵金属SERS基底相当。

研究发现,在这种表面包覆结构不仅可以富集大量VOC分子,还可以改变ZnO表面的折射率,从而有效抑制电磁场在ZnO纳米粒子表面随距离的衰减。这进一步拓展了电磁增强机制在ZnO纳米粒子表面的作用范围,使更多富集在ZIF-8壳层中的信号得到电磁增强,从而实现VOC分子的低浓度检测。

此外,密度泛函理论(DFT)计算同时表明,这种结构可以通过空间位阻效应阻碍VOC分子与ZnO之间形成化学键,避免两者可能存在的电荷转移,从而排除了化学增强机制的影响。因此,在该研究中电磁增强机制是VOC分子SERS信号得到增强的唯一作用机制。该研究表明半导体SERS基底的电磁增强能力可以通过包覆MOF材料得到显著提高,这对未来半导体SERS基底的设计和应用有着重要的意义。

相关论文信息: https://doi.org/10.1016/j.chempr.2023.01.017

封面图片来源:拍信网

文章来源于:全球半导体观察    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    半导体SERS基底非吸附分析物检测获进展;近日,华东理工大学化学与分子工程学院张金龙教授课题组和曹宵鸣教授课题组合作,在表面增强拉曼光谱(SERS)领域获得最新进展。相关研究以《提高......
    酒精检测仪的检测原理是怎样的;酒精测试仪是一款司机实用工具类的手机软件,根据最新“酒驾新规”量身定制;根据用户所输饮酒信息,及时测试车主血液酒精浓度,便捷显示“醉酒驾驶”“饮酒驾驶”“安全驾驶”状态......
    我们为大家分享关于锂电池极柱的3D检测案例。 Part.1 检测需求 1)检测正负极柱平面度及平行度; 2)检测P5-P14点位的平面度(详见检测原理中配图); 3)检测......
    图4的接法只需要8个I/O. 图3 独立键盘 图4 4X4矩阵键盘 由于在单片机在应用系统中,更多的会用到独立键盘,加之两者的检测原理基本相似,所以这一节里我主要讲解独立键盘的检测原理......
    换成电容按键后这个问题不再需要考虑。 8.1.2 检测原理 常规的检测方式一般是通过计算电容放电时间来判断是否有手指按下,这是因为手指会与线路板的铜箔接触面上产生电容效应,当手指没有放在铜箔上的时候,铜箔与PCB之间......
    制箱通过串口与上位机通讯。图1 为车辆外轮廓尺寸检测仪原理框架图,图2 为检测原理流程图。 图2 检测原理流程图 2   硬件电路设计 2.1 DP83848以太网通信电路 该电路采用以太网DP83848 芯片......
     检测原理 常规的检测方式一般是通过计算电容放电时间来判断是否有手指按下,这是因为手指会与线路板的铜箔接触面上产生电容效应,当手指没有放在铜箔上的时候,铜箔与PCB之间存在杂散电容,这两......
    环境氨、硫化氢进行检测,还可以对建材产品挥发出的苯、甲苯等VOC气体进行检测。 同时工采网还提供用于检测pm2.5的粉尘传感器如红外检测原理的GPSM系列和激光检测原理的激光颗粒物传感器TF-LP01......
    应管作为电子负载的负载晶体管,P1为被测电源的电源输入接口,R3和R4为电流检测采样电阻,电流检测放大器采用INA180A3,器件,具有100V/V的电压增益、25uV的输入失调电压。 负载与电流检测原理图 设计......
    智能手环或手表常用的睡眠监测原理;众所周知,苹果、华为、小米等知名品牌都推出有自己的智能手环/手表等智能穿戴设备,这些智能穿戴设备基本都具有睡眠监测功能,可以协助我们检测睡眠的时长和质量。那他......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>