美国国家航空航天局 (NASA) 宣布,将联合美国微芯半导体 Microchip 设计下一代高性能航天计算 (HPSC) 芯片,号称计算性能将是目前航天计算芯片的 100 倍。
NASA 表示,这一关键能力将推进所有类型的未来太空任务,从行星探索到月球和火星登陆任务。
Microchip 将在三年内构建、设计和交付 HPSC 芯片,目标是在未来的月球和行星探索任务中搭载。Microchip 的芯片架构将根据任务需求使计算能力具有可扩展性,从而提高任务的整体计算效率。该设计也将更加可靠并具有更高的容错性。
NASA 称,该芯片将使航天器计算机的计算速度比当今最先进的航天器计算机快 100 倍。作为 NASA 正在进行的商业合作努力的一部分,双方签订了价值 5000 万美元(约 3.4 亿元人民币)的固定价格合同,Microchip 将为完成该项目提供大量研发成本。
NASA 高级航空电子设备首席技术专家 Wesley Powell 表示,他们目前的航天器计算机是近 30 年前开发的,虽然它们在过去的任务中表现出色,但未来的 NASA 任务需要显著提高机载计算能力和可靠性。
文章来源于:ECCN 原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。
相关文章
面向非接触式生命体征检测的光子雷达(2024-06-06)
cm)。这种分辨率很难从身体运动中分离生命体征信号,也无法跟踪多个目标。此外,新兴应用往往需要多个频段和部署位置进行分布式传感,这对于没有复杂并行硬件架构的传统电子器件来说具有挑战性。
微波光子雷达技术由于其相对于传统电子雷达......
IQM Quantum Computers和QphoX合作开发用于扩展超导量子处理器的光学接口(2022-09-05)
信息处理方面的专长,创建一种可扩展的新接口,通过光互连实现与量子处理器通信。为解决现实世界的应用问题,当前的量子处理器需要大幅增加规模。所面临的主要障碍之一是,微波量子......
全国一等奖!九章量子教学实验仪器获权威认可(2024-07-31)
教学机、双光子干涉系统等前沿实验仪器参展。会议期间,由中国石油大学与九章量子联合研制的“涡旋光束干涉系统”参选并荣获本次大会教学实验仪器评比一等奖。
图1:九章量子......
全球首个真空噪声芯片发布(2024-09-23)
显示,国光量子于2021年12月成立,是一家专注于光量子芯片的高科技企业。目前,该公司拥有量子密钥分发、量子随机数、量子雷达、离子阱、光量子通信等领域的授权方案级和芯片级发明专利近30项。
芯片......
普源精电(RIGOL)发布全新系列微波信号发生器(2022-06-16)
USB/LAN接口
兼容标准SCPI指令
通过HDMI口外接显示设备
普源精电DSG5000系列微波信号发生器主要应用场景为单个或多个量子比特控制、通信系统MIMO技术、现代雷达系统、EMS测试等。新产......
光子学突破:微型芯片产生高质量微波信号(2024-04-02)
安装在锋利的铅笔尖上。这一成就为高速通信、原子钟和自动驾驶汽车等应用提供了一条小尺寸超低噪声微波发电的有希望的途径。本文引用地址:微波产生中噪声的挑战
用于全球导航、无线通信、雷达和精确授时的电子设备需要稳定的微波......
突破:中国科学家发现新磁子态,或可用于芯片和雷达(2023-03-13)
团队首次在铁磁绝缘体单晶中发现了一种全新的磁共振,命名为光诱导磁子态,此项发现为磁子电子学和量子磁学的研究打开了全新的维度。研究中揭示的新型磁子强耦合物态,能极大改变铁磁单晶的电磁特性,为光子与磁子的纠缠提供新的思路,这对推动磁子在微波工程和量子......
基于里德堡原子的微波频率梳谱仪(2022-12-19)
Applied上。
微波测量在通信、导航、雷达、以及天文探测领域发挥重要作用。里德堡原子具有较大的电偶极矩,它可以对微弱的电场具有很强的响应,因此可以用里德堡原子作为微波传感器。近年来,该研......
国内首条光子芯片生产线将于2023年在北京建成(2022-10-18)
芯片生产线,将于2023年在北京建设完成,能满足通信、数据中心、激光雷达、微波光子、医疗检测等领域的市场需求。该生产线建成后,将填补我国在光子芯片晶圆代工领域的空白,有望......
哥伦比亚大学构建出微型光子芯片 可提高自动驾驶汽车的微波信号精度(2024-03-22)
using a single laser》,《Nature》(2024)。
挑战
用于全球导航、无线通信、雷达和精密计时的电子器件需要稳定的微波源作为时钟和信息载体。要提高这些器件的性能,关键在于减少微波......