SiC MOSFET的短沟道效应

发布时间:2023-03-29  

Si IGBT和SiC沟槽之间有许多电气及物理方面的差异,Practical Aspects and Body Diode Robustness of a 1200V SiC Trench 这篇文章主要分析了在SiC 中比较明显的短沟道效应、Vth滞回效应、短路特性以及体二极管的鲁棒性。直接翻译不免晦涩难懂,不如加入自己的理解,重新梳理一遍,希望能给大家带来更多有价值的信息。今天我们着重看下第一部分——短沟道效应。

本文引用地址:


Si IGBT/MOSFET与SiC MOSFET,尽管衬底材料不一样,但是形成栅极氧化层的材料却是一样的——都是SiO2。SiC-SiO2界面缺陷大于Si-SiO2界面,界面缺陷会降低反型层沟道迁移率,进而提高沟道电阻。对于SiC MOSFET,尽管人们花了很多精力来提高沟道迁移率,但其迁移率仍然远远低于硅的IGBT/MOSFET。


(更详细的解释请参考:)


因此,商用SiC MOSFET会设计成具有相对较短的反型层沟道,以尽量减少其沟道电阻。对于1200V的SiC MOSFET来说,沟道电阻对整个RDS,on的贡献最大,这与高压Si MOSFET完全不同。此外,对于沟槽MOSFET,由于SiC漂移区厚度较低,基极掺杂较高,因此沟道区附近的电场强度(特别是在开关期间)比Si MOSFET高。为了保护栅极氧化物,必须有一个屏蔽结构,这在所有现代SiC MOSFET概念中都可以找到。与硅器件相比,上述效应导致了更明显的漏极势垒降低效应(DIBL-或短沟道效应)。DIBL效应的原理大家可以在百度搜到,这里就不再赘述了。DIBL效应造成的明显的现象是——随着漏极-源极电压VDS的增加,栅-源极阈值电压VGS(th)会随之降低,见图1。


13.png

Fig.1:不同制造商1200V SiC MOSFET的VGS(th)曲线,Infineon-沟槽,M1-沟槽,M2-平面


DIBL效应和栅极电荷


由于上述的DIBL效应,与IGBT相比,SiC MOSFET的输出特性看起来有所不同。在相同VGS条件下,器件的饱和电流随VDS上升而上升。见图2。


14.png

图2:45mΩ、1200V SiC沟槽MOSFET在25°C时不同VGS下的输出特性曲线。该特性是在短路状态下,通过非常短的脉冲测量的,并在考虑到测量期间温度上升的情况。


硅IGBT通常使用更长的反型沟道,沟道电阻对静态损耗来说是次要的。阻断状态下的电场较小,因此,DIBL效应较低,饱和电流不会随DS电压上升而变化太大。下图(左)是IGBT的输出特性曲线,可以看到,线性区和饱和区之间的分界点很清楚,曲线进入饱和状态之后的部分非常平坦,而SiC MOSFET的分界点则没那么明显,即使进入饱和状态,电流曲线仍有一定斜率的上升。


1679659682746025.png

典型的IGBT输出特性曲线(左)与SiC MOSFET输出特性曲线(右)


由于SiC-MOS器件的VGS(th)随着漏极电压的增加而减少,饱和电流ID,sat上升得更明显,原因可参见以下公式,可以看到,饱和电流与过驱动电压(VGS-VGSth)的平方成正比。


17.png


其中k为一个常数


18.png


W-沟道宽度,µn-电子迁移率,Cox–栅氧化层电容,L–沟道长度


对系统进行短路保护设计必须考虑DIBL的影响。例如,我们需要知道直流母线电压下的退饱和电流水平。在器件设计中,可以通过更有效的p-屏蔽结构和更长的沟道来减少DIBL效应。然而,这两个参数也可能导致更高的RDS,on。


DIBL的第二个效应可以通过图3中的栅极电荷曲线来观察。VDS变化期间的VGS是一个斜坡,而IGBT的典型栅极电荷曲线,这时是一个恒定的VGS值。


1679659645361541.png

栅极电荷曲线对比:IGBT与SiC MOSFET


因此,在计算重要参数QGD时,使用斜坡时间段是不正确的。更合适的方法是将VDS波形与QG特性叠加在同一张图上,并如图3所示设置取值范围(取10%VDS~97%VDS)。


20.jpg

图3:45mΩ/1200V芯片的栅极电荷特性(蓝色),在800V、20A、25°C、VGS-5V→15V的情况下,开通时测量,利用VDS(红色)波形提取QGD


这其实是在对测得的小信号电容CGD进行积分。


1679659616763396.png


上述方法可得45mΩ器件QGD为13nC。从图3中还可以提取使VGS达到阈值水平所需的电荷(QGS,th,约18nC),可以发现QGD/QGS,th之比小于1。这有助于抑制寄生导通,即在VDS快速变化的情况下,通过CGD给栅极充电的电荷量,小于使栅极电压VGS抬升至阈值VGSth的电荷量。


总结一下,商业化的SiC MOSFET普遍采用短沟道设计,用来降低导通电阻,这使得DIBL(漏致势垒降低效应)比较明显。SiC MOSFET中的DIBL效应首先表现在饱和电流随VDS上升而上升,其次表现在栅极电荷曲线中的米勒平台段呈斜线。从图中计算得出SiC的QGD需要将VDS与栅极电荷曲线叠加在一起,通过限定边界条件的方式得出。


来源:,赵佳

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>