宁德时代的凝聚态电池突破对于电动车来说,影响有限。原因在于1KWH/KG的电池能量密度,对车辆的有效能量密度提升并不明显。
当前车辆设计存在一个非常大的错误、认为提升电池能量密度、或者氢燃料高能量密度的燃料是车辆设计的重中之重。高能量密度的电池对车辆有效能量密度提升贡献率不高、而且电池备用能量密度远低新式混动车的增程系统。
图 1混动车结构示意框图
按照多参定因法的分析习惯,先确定一个跟车辆储能无关的界限划分,在纯电动车中,电池是一个单独因子。混动车中车载电池、增程系统是一个因子(发电电动机归属车辆车身结构,与储能有关,但是属于分时复用,对整车重量没有增加,只是降低了车辆的加速性能、降低了最高速度)。这个界限还可以进一步划分,混动车的电池电量与纯电动车电池电量相互抵消扣除。也就是说我们只需要优化增程系统、电池组的质量。
举例说明。纯电动车续航600公里,百公里耗电18度。需要108度电。混动车配置为20度+增程系统。那么有只需要优化、比较88度电容量与15KWe增程系统这两个因子。
混动车的增程系统的能量密度
图 2 混动车增程系统甲烷、柴油、甲醇、二甲醚在0~100KG的能量密度
图2是设定15KWe的混动车增程系统有效发电量除以(整个增程系统净重+燃料重量)。这个图表的设定条件为表1
在表1的工程技术条件下,假定100KG燃料全部用完柴油、甲醇、二甲醚、甲烷作为备用能源时的性能如下表。
我们使用性能最差的甲醇作为燃料,增程系统总重量为130KG。发电220度。而Innolith AG的1KWH/KG。电池需要220KG重量。比增程系统重90KG。燃料耗尽需要15小时,车载电池电量20度,百公里耗电15度。确保了不会出现电池电量耗尽的情况。能量密度上混动车胜出。
再比较一下补能方式,混动车使用80KW以上直流快充,15分钟能充电达到16度以上。补充甲醇燃料,不会超过3分钟。而240度Innolith AG的锂电池,采用1000KW直流快充也最快需要14.4分钟。这么大功率的的充电桩几乎没有办法实现,如果使用120KW快充。最快也要2小时。补能方式上LY混动车胜出。
磷酸铁锂电池的制造成本1000元/度计算。240度电池需要24万。混动车需要2万+1万=3万(增程系统的制造成本低于1万元,使用摩托车发动机成本估算也就数千元)。
燃料甲醇我们使用批发价2000元每吨计算。
纯电动车的耗能成本为0.69*240=165.6元,混动车的耗能成本为213.8元。如果采用国家充电桩标杆电价1.2~1.8元每度+服务费,设为2元。那么纯电动车耗能成本为480元,混动车耗能成本为240元。混动车胜出。
甲醇是以生物质为原料、太阳能为能量源而制造得来。只是促进了碳循环,没有增加二氧化碳排放。并解决了太阳能的储能问题。
由上面的比较得知,任何电池技术对车载能源来说,都不重要。即便理论上的电池技术最大值都达到了。电池也无法跟混动车竞争。我们应该走出汽车设计的误区,降低对车载电池能量密度的期望。