ADALM2000实验:锁相环

发布时间:2023-02-09  

本实验活动介绍锁相环(PLL)。PLL电路有一些重要的应用,例如信号调制/解调(主要是频率和相位调制)、同步、时钟和数据恢复,以及倍频和频率合成。在这项实验中,您将建立一个简单的PLL电路,让您对PLL操作有基本的了解。

本文引用地址:

背景知识

PLL是一种反馈系统,用于调节或锁定压控振荡器(VCO)输出与输入基准信号之间的相位差,如图1所示。VCO是一种振荡器,其输出频率是某个输入控制电压的函数。通常,当VCO用于PLL等反馈环路时,电压频率转换函数必须至少是单调的。VCO的一个特例是电压频率转换器(VFC),其电压/频率特性是线性的。反馈环路中的分频器的分频系数N一般是整数,包括1,若为1则与没有分频器或从VCO输出直连鉴相器输入的情况相同。

1673868998371499.png

图1.PLL基本框图

PLL是许多深奥书籍和讨论的主题,非常复杂,无法在这几页中详尽说明。本实验的末尾有额外阅读材料的链接。

材料

●   ADALM2000 主动学习模块

●   无焊试验板

●   跳线

●   一个2.2 kΩ电阻

●   一个47 kΩ电阻

●   一个10 kΩ电阻

●   一个4.7 nF电容(标记为472)

●   一个100 pF电容(标记为101)

●   一个CD4007 CMOS阵列

●   2个ZVN2110A NMOS晶体管

●   2个ZVP2110A PMOS晶体管

●   一个 AD654 VFC

●   一节9 V电池(带连接器)

第1步指导

在无焊试验板上,首先基于AD654搭建VFC电路,如图2所示。将电路搭建到试验板的一侧,以便为PLL的其他部件留出空间,我们将在本实验活动的后续步骤中添加这些部件。控制电压通过由R1和C1组成的单极点低通滤波器施加。这相当于图1中馈送至VCO模块的低通滤波器模块。

1673868982812905.png

图2.VFC电路

硬件设置

开启固定5 V电源,并将9 V电池连接到电路。将AWG1输出连接到VIN,如图2所示。将AWG1配置为DC源,初始设置为2.5 V。将示波器通道输入CH1+连接到VSQR输出,如图2所示。还应将CH1-输入接地。

3.jpg

图3.VFC试验板电路

程序步骤

使用AWG 1直流偏置控制,将VIN电压从1 V调整到4 V,同时在VSQR观察VFC输出的频率。使用示波器控制屏幕上的频率测量功能来完成此操作。根据公式1,图2中的Rt和Ct设置VFC的标称输出频率。

4.png

例如,VIN为设置范围的中间值2.5V,并给定Rt Ct值(2.5/(10 × 10 kΩ × 100 pF)),输出频率应接近250 kHz。验证您的测量结果是否与该值一致。如果不一致,请重新检查电路连接和元件值。

5.jpg

图4.VFC输出

第2步指导

接下来,在试验板上添加来自上一个实验的异或门鉴相器电路,如图5所示。构建异或门后,将其连接到V转F电路,如图6所示,以构成完整的PLL。在给电路添加任何东西之前,务必关闭5 V电源并断开9 V电池。

1673868942300201.png

图5.添加XOR鉴相器

1673868930522894.png

图6.完整PLL电路

硬件设置

开启固定5 V电源,并将9 V电池连接到电路。将AWG1输出连接到FREF,如图4所示。将AWG1配置为方波,其幅度为5 V峰峰值,偏置为2.5 V(0 V至5 V摆幅);将初始频率设置为第1步中测得的值(即VIN设置为2.5 V时,应在250 kHz左右)。将示波器通道输入CH1+连接到FREF输入,并将示波器通道CH2+连接到VSQR输出,如图6所示。还应该将CH1-和CH2-输入接地。将示波器设置为在通道1(FREF信号)的上升沿触发。

8.jpg

图7.完整的PLL试验板电路

程序步骤

在FREF的频率设为对应于AD654引脚4上2.5 V控制电压的情况下,VSQR处看到的输出频率应锁定输入基准频率FREF。在示波器屏幕上,您应该看到两个方波是稳定的(即彼此锁定),并且VSQR相对于FREF偏移约90°。请记住,当XOR鉴相器的两个输入相差90°时,其滤波输出将处于其输出范围的一半或约2.5 V。

9.png

图8.完整的PLL FREF和VSQR曲线

以小增量增大和减小基准频率FREF,以确定PLL会锁定的最小和最大频率。当更改基准输入的频率时,注意FREF和VSQR之间的相对相位差。执行此操作时,测量AD654引脚4上的滤波直流控制电压,并将这些读数与步骤1中扫描VFC直流控制电压时测得的读数进行比较。

将示波器通道2连接到图6中C点处异或门的输出端。将所看到的方波与异或门A (VSQR)和门B (FREF)的输入进行比较。当PLL锁定在最小和最大锁定频率以及锁定范围的中心频率时,C处的波形如何变化?

附加第3步指导

图6中的简单PLL电路不是十分有意义,因为输出信号只是输入信号的相移版本。如图1所示,如果在从VFC输出端到鉴相器输入端的反馈路径中插入一个数字分频器模块,则输出信号将是一个更高的倍频信号。使用任何可用的数字分频器IC,如CD4020、CD4040、CD4060甚至SN7490(几乎任何分频器IC都可以),断开与异或输入A的连接,并插入分频器模块,如图9所示。

1673868889470836.png

图9.PLL倍频器

根据您构建的分频器的分频系数N,您需要相应地改变FREF输入频率。例如,当N=8时,如果FREF之前是250 kHz,新的FREF将是250/8或31.25 kHz。异或门鉴相器输出端的脉冲频率也将是原来的八分之一。

进一步阅读:analog.com/media/en/training-seminars/tutorials/MT-086.pdf

来源:Antoniu Miclaus 和 Doug Mercer,

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>