ChatGPT的大火,让AI席卷全球,在科技圈和媒体圈激起千层浪,很多圈内人都认为GPT有望开启像之前互联网、移动互联网一样的新一轮生产力加速周期,重塑很多行业,于是各大厂纷纷推出自己大模型,生怕错过了这次AI大浪潮,这点在资本圈同样有共识,除了AI外,传媒、办公软件、电商、游戏被认为是优先受益的应用领域,市值纷纷成倍的大涨。
那么对于实体行业来说,GPT又能带来什么呢?华为任正非认为:“人工智能软件平台公司对人类社会的直接贡献可能不到2%,98%都是对工业社会、农业社会的促进。”意思也就是说GPT更大的贡献将会在以制造业为代表的实体经济中体现出来。
那么,GPT是如何赋能制造业,在制造业中找到落脚点呢?这就是我们本文要介绍的主角——机器视觉,机器视觉顾名思义就是用机器代替人眼来获取感知信息并做出决策,按功能主要分为:检测、测量、定位、识别,机器视觉是工业自动化的基础技术之一,要了解AI是如何通过机器视觉赋能制造业的,这得从机器视觉的发展历程说起。
从根源上机器视觉是Ai重要分支
机器视觉起源于上世纪 50 年代,Gilson 提出了“光流”这一概念,并基于相关统计模型发展了逐像素的计算模式,标志着 2D 影像统计模式的发展。
1960 年,美国学者 Roberts 提出了从 2D 图像中提取三维结构的观点,引发了 MIT 人工智能实验室及其它机构对机器视觉的关注,并标志着三维机器视觉研究的开始。
70 年代中期,MIT 人工智能实验室正式开设“机器视觉”课程,研究人员开始大力进行“物体与视觉”相关课题的研究。1978 年,David Marr 开创了“自下 而上”的通过计算机视觉捕捉物体形象的方法,该方法以2D的轮廓素描为起点, 逐步完成 3D 形象的捕捉,这一方法的提出标志着机器视觉研究的重大突破。
80 年代开始,机器视觉掀起了全球性的研究热潮,方法理论迭代更新,OCR和智能摄像头等均在这一阶段问世,并逐步引发了机器视觉相关技术更为广泛的传播与应用。
90 年代初,视觉公司成立,并开发出第一代图像处理产品。而后,机器视觉相关技术被不断地投入到生产制造过程中,使得机器视觉领域迅速扩张,上百家企业开始大量销售机器视觉系统,完整的机器视觉产业逐渐形成。在这一阶段,LED 灯、传感器及控制结构等的迅速发展,进一步加速了机器视觉行业的进步,并使得行业的生产成本逐步降低。
2000 年至今,更高速的 3D 视觉扫描系统和热影象系统等逐步问世,机器视觉的软硬件产品蔓延至生产制造的各个阶段,应用领域也不断扩大。当下,机器视觉作为人工智能的底层产业及电子、汽车等行业的上游行业,仍处于高速发展的阶段,具有良好的发展前景。
2017年至今,AI深度学习框架的开发发展到了成熟期,各大巨头纷纷布局机器视觉领域,得益于深度学习等算法的突破、算力的不断提升以及海量数据的持续积累,人工智能逐渐从实验室走向产业实践,以算法、算力和数据为主旋律追求极致创新方面不断突破,为机器视觉实现更新迭代和提高应用价值的重要技术支撑,所以从根源上说现在的机器视觉就是AI的一个分支。
机器视觉搭载AI 技术
切入更多差异化工业应用场景
随着人工成本不断升高,以机器取代人工,能够帮助制造业实现自动化和智能化,是现代化制造提质、增效、降本、减排的推动力。随着我国进入全面推进智能制造阶段,机器视觉将持续向全行业渗透,应用市场需求急剧扩增,为机器视觉提供了较大的需求牵引,是机器视觉的重大战略机遇。根据凌云光 2022 年 7 月 14 日发布的投资者调研纪要显示, 2016-2021年,中国机器视觉行业规模销售收入从49.7亿元上放至143.0亿元,5年复合增长率为30.4%。
数据来源:凌云光,AIoT星图研究院整理
市场规模的高速增长,来源于下游市场的需求不断释放,从需求端来看,机器视觉广泛应用于电子及半导体、汽车制造、食品包装、制药等领域,各个领域的应用场景具备较大差异性。
2022年我国消费电子、半导体、汽车为机器视觉领域的三大应用端,虽然机器视觉下游各行业对精度的要求不一,但整体来看,伴随主要应用端(消费电子、半导体、汽车、新能源)的升级迭代,对机器视觉技术的高精度需求相应提高,尤其需要AI深度学习的高度结合以适应下游应用的发展。
行业的发展,除了下游市场需求的爆发外,行业参与者推动及资本的赋能亦至关重要,无论是芯片端、核心零部件、软件服务商还是系统集成商,我们可以看到企业是越来越多,在一级和二级市场上资本亦对机器视觉行业的发展看好,以华为来说,在2022年特别成立机器视觉军团,以满足市场需要,可见行业的发展已经进入高速期。
GPT通过机器视觉赋能制造业
在文章的最后我们回到我们开头提出的问题:GPT如何通过机器视觉赋能制造业?
今年的四月Meta AI在官网发布了基础模型Segment Anything Model(SAM)并开源,其本质是用GPT的方式(基于Transform 模型架构)让计算机具备理解了图像里面的一个个“对象”的通用能力。SAM已经学会了关于物体的一般概念,并且它可以为任何图像或视频中的任何物体生成掩膜,甚至包括在训练过程中没有遇到过的物体和图像类型,无需额外的训练。
Meta预计,与专门为一组固定任务训练的系统相比,基于 prompt工程等技术的可组合系统设计将支持更广泛的应用。SAM可以成为AR、VR、内容创建、科学领域和更通用 AI 系统的强大组件。行业人士认为SAM有望助力机器视觉发展,带动 AI+制造业垂直领域技术革新。
不仅仅是SAM,越来越多的深度学习模型推出,让机器视觉更加深入到制造业场景中,带来更多更快的落地应用,机器视觉开始进入GPT时刻,制造业亦开始进入GPT时刻。
相关文章