碳化硅SIC将会发力电动汽车?

发布时间:2024-03-07  

01

碳化硅

碳化硅在功率半导体市场(尤其是电动汽车)中越来越受欢迎,但对于许多应用来说仍然过于昂贵。


原因很容易理解,但直到最近,碳化硅在很大程度上还是一种不够成熟技术,不值得投资。现在,随着对可在高压应用中工作的芯片的需求不断增长,SiC 受到了越来越多的关注。与硅功率器件的其他潜在替代品不同,SiC 具有熟悉的优势。


SiC 最初用于晶体收音机中的检测器二极管,是最早具有商业价值的半导体之一。商用 SiC JFET 自 2008 年起就已上市,在极端环境的电子产品中特别有用。SiC MOSFET 于 2011 年实现商业化。该材料具有 3.26 eV 的中等带隙,击穿电压是硅的 10 倍。

不幸的是,SiC 的制造也非常困难。日立能源全球产品管理副总裁托比亚斯·凯勒 (Tobias Keller) 解释说,标准的直拉法 (CZ) 增长方法并不可行。CZ 生长在二氧化硅坩埚中将硅在约 1500°C 的温度下熔化,但碳化硅的熔点高于 2700°C。


SiC 晶体通常通过Lely 方法生长。SiC 粉末在氩气气氛中加热到 2500°C 以上,并升华到晶种上。该过程给出了足够的结果,但容易出现缺陷且难以控制。对传入的 SiC 晶圆进行检查的工程师通常会发现由于堆叠错误和其他缺陷而导致的大量“死区”。


SiC 器件构建在针对预期工作电压进行优化的定制外延器件层上,较厚的外延层可以承受更高的电压,但它们也往往有更多的缺陷。在过去两年中,晶圆质量的提高和死区的早期识别使整体良率提高了 30%。


02

用于更高迁移率

SiC MOSFET 的更好电介质进一步受到栅极氧化物/碳化物界面质量普遍较差的限制。在 IEEE 电子器件会议 (IEDM) 上展示的工作中,日本京都大学和大阪大学的研究员 T. Kimoto 及其同事解释说,界面处的碳-碳缺陷似乎是由 SiC 的直接氧化造成的。这些缺陷位于 SiC 导带边缘附近,它们会增加沟道电阻并导致成品器件的阈值电压漂移。

作为 SiC 氧化的替代方案,Kimoto 的研究小组首先用氢等离子体蚀刻表面,然后通过 CVD 沉积 SiO2,然后对界面进行氮化。该工艺降低了陷阱密度,并使反型层电子迁移率在 10V 栅极偏压下增加了一倍以上,达到 80 cm²/V-sec。

一种未命名的高 k 介电化合物也可以与 SiC 形成低缺陷界面,而无需 SiO2所需的钝化步骤。与硅器件一样,SiC MOSFET 使用高 k 栅极电介质也会增加给定电容下的物理厚度,从而减少栅极漏电流。

ac4b263e-bb5c-11ee-8b88-92fbcf53809c.png

SiC 载流子的较差迁移率给器件设计人员带来了另一个挑战。即使经过几十年的努力,通过优化栅极电介质实现的最佳迁移率仍然比硅低10倍。因此,沟道电阻相应地比硅高10倍。

在功率器件中,低迁移率限制了性能和耐用性。器件电阻和开关损耗直接影响电动汽车的续航里程等参数。虽然注入掺杂剂和结构修改可以降低沟道电阻,但这样做可能通过增加电流密度来减少短路耐受时间。

短路耐受时间是功率器件的重要安全参数。如果设备因任何原因发生短路,它需要存活足够长的时间才能使保护电路做出响应。故障不仅会导致电力负载永久性损坏,还会导致用户受伤、火灾和财产损失。确切的要求取决于保护电路的设计,但通常为 5 至 10 微秒。随着电流密度的增加,短路条件下的温度也会增加,并且耐受时间会减少。

SiC MOSFET 的商业采用进展缓慢,部分原因是这些器件的耐受时间往往比类似额定硅器件短。因此,设计人员希望改变沟道电阻和电流密度之间的关系。是否可以在不将电流密度增加到危险水平的情况下降低电阻。

一种可能的解决方案是减少栅极偏压,同时减少氧化物厚度。更薄的氧化物可以改善沟道的控制(如硅 MOSFET 一样),从而允许较低的电压运行。该解决方案几乎不需要对制造过程进行任何改变。虽然对具有薄电介质的 SiC 器件的研究很少,但硅器件使用薄至 5 nm 的氧化物,而不会产生过度的隧道效应。此外,如上所述,使用高k电介质可以提供更好的沟道控制,同时保持物理厚度。

纽约州立大学理工学院的 Dongyoung Kim 和 Woongje Sung 提出了第二种替代方案,旨在通过增加有效沟道厚度来降低电流密度。他们使用 4° 倾斜角注入深 P 阱,利用沿 <0001> SiC 晶格方向的离子沟道。这种方法只需要对制造工艺进行微小的改变,因为深井注入使用与传统井相同的掩模。由此产生的器件将最大漏极电流降低了约 2.7 倍,并将耐受时间延长了四倍。

为了解决类似的问题,硅行业转向了现在无处不在的 finFET。增加恒定电流下的沟道面积会降低电流密度。普渡大学的研究人员展示了一种具有多晶硅栅极和多个亚微米鳍片的 SiC 三栅极 MOSFET,实现了特定沟道电阻降低 3.6 倍。

ac721ce4-bb5c-11ee-8b88-92fbcf53809c.png

虽然尚不清楚功率器件行业将多快采用像 finFET 这样激进的架构,但 SiC 的高击穿电压是一个引人注目的优势。希望实现这一优势的制造商需要找到解决方案来应对低迁移率和高电流密度带来的挑战。

文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    家可以看一下自己电动汽车的电池配件厂家,很多电车的动力电池其实就是这家企业,所以说这是一家相对“隐形”的电池大厂。 让我没想到的是,在五月中旬第十三届科技大会上,国轩高科发布了第一款全固态电池,叫做金石电池。厂家......
    三棵树汽车新材料与上海化工研究院携手共研先进涂料;引领汽车涂装行业新趋势 上海2024年6月6日 /美通社/ -- 近日,上海三棵树汽车新材料有限公司(以下简称"三棵树汽车新材料")与上......
    无模组设计使零部件数量减少30%,系统Z向超薄设计可适配轿跑、SUV等多款车型,直连BMS+FDC设计使线束减了80%,通过纳米隔热、陶瓷复材绝缘等设计实现电芯间"0"热扩散。曹勇表示,G刻电池系统的大电量和超快充能力离不开材料......
    南省投智慧能源有限公司投资建设,是集太阳能光伏发电系统、储能系统、新能源充电桩及相应配套设施为一体的新能源项目,位于博爱县焦作安彩新材料有限公司厂区内。该项目通过采用BAPV技术,利用厂区新、旧厂......
    价格或仍将在每吨十几万元的价格区间波动。 具体来看,车企在今年开年的价格战中,是以A级插电混动车型为主力军,该类车型带电量一般在6kWh-15kWh,相较纯电车型带电量而言,插混车型的电池需求量较纯电车型小。因此,仍需理性看待插混电池起量将带来的电池材料......
    家近期则开发了利用钻石将核废料制成电池,期盼能在未来解决核废料这令人头痛的问题。 英国布里斯托大学的物理学家和化学家在近期合组研究团队,主要目的就是研究该怎么将核废料转变成有用的能源。他们发现若将具有短距离放射性的材料......
    英国制造出世界首块碳-14钻石电池:潜在寿命可达数千年; 12月5日消息,英国原子能管理局4日宣布,该机构和布里斯托尔大学的科研人员成功制造出世界上第一块碳-14钻石电池。 据介......
    并不只是造型和性能,还有各种科幻式的交互以及多种场景的满足,让座舱空间充满了无限的想象力。 从设计作品来看,未来汽车设计将更多应用新材料。在高强钢的基础上,铝材、碳纤维复合材料以及镁钛新型塑料,都将......
    金辑奖重点聚焦智能驾驶、智能座舱、智能底盘、汽车软件、车规级芯片、大数据及人工智能、动力总成及充换电、热管理、车身及内外饰、新材料十大细分板块,进行优秀企业及先进技术解决方案的评选,向行......
    )体系。 在科技大会上,国科工研总院副院长曹勇表示,超快充G刻电池已经准备好量产。 国轩高科还展示了采用其自主研发的第二代硅碳材料和快充电解液的星晨电池,该电池可以在9分钟内实现从10%至70%的超......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>