LLC拓扑结构如何在更低负载下进入打嗝模式

发布时间:2023-12-21  

在ACDC开关电源设计过程中,当需要实现高效率设计需求时,工程师往往会考虑LLC谐振半桥拓扑结构。LLC拓扑结构可以实现软开关,因此在开关电源设计尤其是在大功率的开关电源设计过程中往往具有优势。目前市面上经常可以看到的NCP1399以及NCP13992系列就是安森美(onsemi)LLC拓扑结构控制芯片家族的代表成员。


但是在设计过程中,工程师发现在轻载情况下LLC谐振电路工作状态总是不容易稳定。这是由于LLC拓扑结构本身的特性决定的。因此LLC控制芯片往往会在轻载的时候让电源进入打嗝模式(SKIP状态)。什么时候进入打嗝模式对于LLC谐振半桥设计来说是一个比较艰难的选择,在负载较大的时候进入打嗝模式,会导致变压器噪声等问题,在较小的负载进入打嗝模式又可能会导致输出电压不稳定等问题。在一些设计场合,比如LED照明电源,相对于输出电压和电流的稳定性来说,工程师往往不太在意轻载效率和待机功耗等问题,因此希望能在尽量小的负载进入打嗝模式甚至不进入打嗝模式。


目前市面上的LLC拓扑结构电源大部分会在10%负载情况下进入打嗝模式,那么有没有更多的选择,能在更低负载情况下进入打嗝模式呢?NCL30159,安森美半导体LLC控制芯片家族的新成员,给出了新的选择项。


产品方案简介:


1.方案特点:


  • 使用onsemi临界模式的电流型PFC控制器NCL2801,内部集成谷底开通技术,在具备优良的THD和PF值性能基础上,还拥有优秀的效率表现;

  • 使用安森美的最新电流型LLC拓扑结构驱动芯片NCL30159,在NCP1399和NCP13992的基础上,增加了原边恒流功能,并对轻载时候的打嗝工作模式进行了优化;

  • 简易的外部线路,有利于简化PCB布板工作;

  • 完善的保护:OTP,OVP,OCP等;


2. 方案简易结构框图:

 

image.png


3. 应用领域:


• 高PF值,低THD,高效率等应用场合,比如LED照明行业;


方案应用实例:


1. 方案实物图:

 image.pngimage.png

 

2. 典型应用原理图以及线路介绍:

 

image.png


• PFC部分使用onsemi的NCL2801产品,SOIC-8封装,外围线路简单。FB脚为输出电压采样信号输入端,作为反馈信号输入端的同时还有输出电压OVP功能保护。MULT脚外置电阻分压,采样输入AC电压,用于判定输入电压范围以及设置BO功能保护。在设计过程中,还需要注意CS脚外部电阻(R10)的取值:R10阻值固定为4档,分别是150Ω,330Ω,620Ω以及1000Ω。R10的取值大小决定了负载大小变化时,MOS管开关过程中的第一个固定跳变CTRL脚的电压大小,R10取值越大,第一个谷底跳变时的负载就越大。我们推荐使用150Ω或者330Ω电阻,在拥有较好THD表现的同时,也有较好的效率表现。


• LLC部分使用安森美的最新LLC结构控制芯片NCL0159,SOIC-16封装。作为电流型控制的LLC控制器,拥有快速的反馈环反应速度,具有优秀的动态响应表现。NCL30159内置高压启动脚HV脚,可以耐受最大720V的启动电压。PFCFB脚内部内置1V电压基准,检测PFC部分电压,用于设置LLC电路的启动电压点。SKIP脚内置20uA恒流源,外置对地电阻产生电压与FB电压比较,用于设置NCL30159进入SKIP模式的负载点。LLCCS脚内置2.72V(版本不同会有差异)基准,通过外部电容分压(C15,C16以及R30)检测谐振电容上电压,用于实现原边谐振腔电流大小检测以及OCP保护。PFCMODE脚为电压输出端,当VCC电压高于Vcc_on之后,PFCMODE会有一个稳定的电压输出(正常工作状态时为12V左右)。该电压可以用于给PFC部分控制器VCC脚供电。


• 反馈环路电路使用onsemi新发布的芯片产品NCL38046。该产品SO-8封装,内部集成CC/CV反馈功能,并且内置PWM调光和模拟调光功能,极大简化了LED照明电源副边反馈线路。


3. 优化打嗝工作模式,更低负载进入打嗝模式:

 

image.png


4. 优秀的调光精度和效率表现:

   

image.png


5. 优秀的PF值和THD表现:

   

image.png


方案应用总结:


作为在市场经过验证的PFC和LLC控制器,NCL2801、NCP1399和NCP13992以其优秀的表现赢得了非常多电源工程师的认可和青睐。在此基础上,NCL30159增加了原边恒流功能,高压启动脚耐压提升到720V,并且优化了轻载时候的打嗝工作模式,使得NCL30159在功能上更加完善,并且极大改善了轻载时候打嗝模式不易调试的痛点。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    变化的数据了。 以上分析的是GPIO模块IO引脚的输入模式的工作原理,下面介绍一下GPIO输出模式的工作原理 GPIO开漏输出_OUT_OD 模式工作原理 上图是GPIO开漏输出模式的工作原理图 当CPU......
    、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作......
    、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作......
    我用stm32 的3.3v输入也是没有问题的     1、模块(OUT脚的作用是什么) 2、工作原理 (1)、采用IO口TRIG触发测距,给至少10us的高电平信号; (2)、模块自动发送8个40khz的方......
    毕业设计| STM32F103全彩FFT音乐频谱+LED年历闹钟显示;工作原理 上面演示的音乐频谱工作原理: Image 通过电脑,手机等外部设备3.5mm耳机孔,输出音频信号,然后经过继电器模块......
    系统示意图  IGBT模块工作原理 在电控模块中,IGBT模块是逆变器的最核心部件,总结其工作原理:通过非通即断的半导体特性,不考虑过渡过程和寄生效应,我们将单个IGBT芯片看做一个理想的开关。我们在模块......
    功能开漏输出 GPIO_Mode_AF_PP = 0x18 // 第二功能推挽输出}GPIOMode_TypeDef; 首先说说数字输入,其有三种状态:输入浮空/输入下拉/输入上拉,IO口配置为输入时,port口工作原理......
    IO-Link如何将“智能”融入智能工厂;IO-Link®有望让几乎所有工厂传感器或执行器实现“智能化”,从而能够与过程控制器进行通信并共享有价值的数据。这篇博文探讨了IO-Link的开发原因、工作原理......
    IO-Link如何将“智能”融入智能工厂;®有望让几乎所有工厂传感器或执行器实现“智能化”,从而能够与过程控制器进行通信并共享有价值的数据。这篇博文探讨了的开发原因、工作原理、使用场合和局限性。本文......
    升降压原理浅析;在消费类电子和家电市场等领域,为了实现更复杂的产品功能,需要多类型芯片、模组、最小系统等一起配合。然而,各模块工作电压会有差异,故就需要对电压进行转换,因此......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>