​了解电子元件和电路中的磁滞现象

发布时间:2024-03-11  

了解电比较器电路、和大功率设备中的行为及优点。

本文引用地址:

在前面的两篇文章中,我介绍了的概念,并详细阐述了系统的输出如何依赖于输入的当前状态和系统的历史。在这篇文章中,我想探讨一些电气工程应用,受益于磁滞。

比较器电路中的磁滞现象

比较器电路可能是电子设计中最具象征意义的故意磁滞。顾名思义,比较器是一种比较两个输入信号并通过其输出电压指示两个输入中哪个电压较高的装置。

一个基本的模拟比较器就是一个高增益的差分放大器,这就是为什么一个没有负反馈的运算放大器可以成为一个合格的比较器。然而,运算放大器并没有针对比较器功能进行优化,所以最好使用真正的比较器IC。

理想的非磁滞比较器只有一个差分输入阈值。通常该阈值为0 V,这意味着当两个输入信号之间的差值为零时,输出将转换。因此,一旦非反相输入处的电压上升到反相输入处的电压之上,则输出迅速增加到比较器的正电源电压;一旦非反相输入端的电压低于反相输入端的电压,输出端就转换为负电源电压。

这些在纸上看起来都不错,但在实际电路中,单阈值模型往往不令人满意。问题(和往常一样)是噪音。尽管“真实”(也就是说,无噪声)输入信号仅相互交叉一次,但影响所有实际信号的小幅度波动可导致多个输出转换。

我们可以在图1中看到这一点,其中蓝色曲线表示比较器非反相输入处的信号。黑线表示连接到反向输入的电压,用作参考电平。

具有递减输入信号的单阈值比较器电路。

 1.png

图1:一种单阈值比较器电路。使用的图像由All About Circuits提供

当蓝色曲线远高于参考电平时,输出位于或接近正导轨。当它远低于参考水平,输出是在或接近负轨。当蓝色曲线接近参考水平时,故障发生。由于差分阈值为0 V,因此每次发生任何类型的交叉时,输出都会转换。此处所需的行为仅为一个输出转换,因为蓝色信号的无噪版本只会导致一个转换。然而,对于噪声,我们得到三个跃迁。

通过同时考虑系统的当前状态和历史,可以大大减少虚假跃迁的次数。实际上,这类似于图2:一个比较器电路,其中磁滞产生两个单独的阈值,一个用于增加的输入信号,另一个用于减少的输入信号。

一种具有递增和递减输入阈值的磁滞比较器。

 2.png

图2:具有递增输入阈值(绿线)和递减输入阈值(红线)的磁滞比较器。图片由All About Circuits和Robert Keim提供

此图演示了如果将一个参考电平转换为两个单独的阈值电平(此处用红线和绿线表示),如何避免虚假转换。由递增信号引起的转换要求输入跨过绿色阈值,而由递减信号引起的转换要求输入跨过红色阈值。这只发生一次(如图3中的红色圆圈所示),因此只生成一个输出转换。

图2中的电路,带有一个红色圆圈标记输入转换的位置。

 3.png

图3:图2中的电路,用一个红色圆圈标记输入穿过下限阈值的点。图片由All About Circuits和Robert Keim提供

磁滞是通过向比较器IC添加正反馈来实现的。我们将在下一篇文章中讨论电路设计细节。

磁滞与数据存储

正如我在前一篇文章中所解释的,磁滞既可以是浪费能量的不希望的来源,也可以是抑制噪声的有益手段。然而,在电子技术的一般历史中,更重要的是:磁滞是硬盘驱动器和其他磁存储介质中数据存储的基本原理。

由铁磁材料制成的磁存储介质,就磁场强度和磁通密度而言,铁磁材料是自然磁滞的。例如,一块铁具有类似于图4的磁滞曲线。

铁的磁滞曲线。

 4.png

图4:铁的磁滞曲线。使用的图像由All About Circuits提供

一旦这类材料被磁化,将磁场强度减小到零不会使磁通密度减小到零。为了消除磁化,你必须施加一个相反极性的磁场。由于当外加磁场失活时,磁通密度不会衰减到零,因此在移除功率后,材料可以保留信息。因此,它可以作为非易失性存储器

晶闸管的闭锁特性

我提到过,我们通过创建一条正反馈路径来给比较器增加磁滞。晶闸管是一种半导体器件,其内部结构包含正反馈,从而以闭锁动作的形式显示磁滞。图5显示了一种称为可控硅整流器(SCR)的晶闸管的物理结构、等效电路和示意图符号。

SCR物理图、等效原理图和原理图符号。

 5.png

图5:SCR物理图、等效原理图和原理图符号。使用的图像由All About Circuits提供

双向可控硅是可控硅的双向版本。如图6所示,它相当于两个互连的SCR。

双向晶闸管等效电路和原理图符号。

 6.png

图6:双向晶闸管等效电路和原理图符号。使用的图像由All About Circuits提供

SCR和TRIAC是电控闭锁开关。栅极处的信号使这些器件导通电流,并且在移除栅极信号后,它们继续导通电流。当流经该器件的电流低于称为保持电流的阈值时,该器件退出锁定状态。

这种滞回特性在各种高功率应用中都很有价值。例如,双向晶闸管在交流应用中特别有用,因为交流应用必须调整传送到负载调光器电路的平均功率。

下一篇

我们已经看了三个例子磁滞作为设计和改进电子电路的工具。这些例子为我们提供了一个全面的概念,即磁滞提供的好处,它可以使系统对噪声更加鲁棒,便于数据存储,并简化大功率和交流系统中的控制任务。我将在下一篇文章中总结这一系列关于磁滞的内容,这篇文章将使用LTspice来模拟探索比较器电路中的磁滞。


文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    场由铁芯磁路和气隙磁路组成 。那么主磁路中的磁场能量是怎么分布呢? 在回答这个问题之前,需引入基尔霍夫第一定律,也被称为磁路第一定律,它阐明磁路中磁通量是守恒的。 磁通等于磁感应强度乘以横截面积:φ=B*S。 由于......
    定义是: 单位是Henry(亨利),一位美国物理学家,他其实和法拉第几乎同时独立的发现了电磁感应现象,只不过法拉第更早的发表了成果,就赢得了冠名权。 我们通常说的电感,严格来说应该叫自感,即线......
    匝数为 N, 自感为 L : 对于笔的情况: ①提高笔线圈单位长度密度 n; ②提高磁导率 μ; ③加大线圈体积 V. 3 电磁笔线圈的磁感应强度计算 此试则分析了笔的磁场与笔各部分组成:电感......
    电频率为0,容抗无限大,因此电容通交阻直,电容的电压不能突变。 *感抗,感抗=2πfL,与容抗相反,低频时变小高频时变大,直流电频率为0,感抗为0,所以电感通直阻交,电感的电流不能突变。 容抗=感抗......
    变电流通过时,因为电磁感应而在线圈中产生磁通量。 对于 差模信号 ,产生的磁通量大小相同、方向相反,两者相互抵消,因而......
    ,,式中,L为线圈电感值。根据电磁感应定律,变化的电场产生磁场,因此线圈内部会产生磁场(设磁感应强度为B),磁场方向如图1中绿线所示。 (1)衔铁开始运动 由于磁场的存在,衔铁的受力情况如图1所示。衔铁......
    学领域也是如此。 科学家让电流流过导线的时候,偶然发现了导线发热、电磁感应现象,进而发明了电阻、电感。科学......
    意,它是RMS 电流函数变化的平方。   铁损耗。根据法拉第电磁感应定律,导电材料中磁场的变化将产生电压,然后产生被称为涡流的电流回路。铁损耗与电机速度的平方和电机电流的平方成正比。根据实际测量,当电......
    )。因此,消除了电缆之间的互感(M)造成的误差。连接如图: 3.4 6端子法 对于交流阻抗的测量与直流不同,其特点是不会受到温差电动势的影响。但是,由于电流电缆与电压电缆之间的电磁感应,测量......
    音质效果。 因此,小体积大功率输出的方案设计中,对滤波电感的选型逐渐已经成为工程师们重点关注的问题。 数字功放电感......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>