永磁同步电机控制系统仿真—控制器模型的整体结构

发布时间:2024-08-30  

多速率仿真

通常情况下,在Simulink环境下搭建的电力电子控制系统的仿真模型,都是多速率的仿真模型。这是因为:


01

电力电子控制系统中包含多种类型的模型,不同模型对于仿真速率的要求是不同的。

02

被控对象模型中的电气部分,例如永磁同步电机、逆变器,都是希望仿真速率越快越好。具体选择多快的仿真速率,与PWM的频率,逆变器的死区时间,模型的解算方式等因素相关。对于10kHz开关频率,仿真速率最好是开关频率的100倍,因此为1MHz(仿真步长1µs),但是如果死区时间为2µs,那么仿真步长最好是死区时间的1/10(0.2µs),此时仿真速率就是5MHz。

03

被控对象模型中的机械部分,通常情况下仿真步长为1ms(仿真速率1kHz),但是在电动汽车的MCU HIL中,为了测试电机的极限速率变化,可能此时电机的机械部分也需要1MHz以上的仿真速率,以保证电机位置和速率的精确模拟。

04

PWM比较器模型部分,通常情况下PWM比较器的三角波都是通过一个高频率时钟进行计数来产生的。这个时钟一般都大于10MHz,以保证PWM输出占空比的调节精度。

05

控制器模型部分,其仿真速率一般与开关频率相关,为开关频率的整数倍。例如开关频率为10kHz,那么控制器模型的仿真速率可以是10kHz或者20kHz,具体选择10kHz还是20kHz,就与将来选择的DSP或者Micro Controller的处理能力相关了。此外,实际应用中,还存在变开关频率的情况,此时控制器模型的仿真频率也是变化的。

总之,当我们在Simulink环境下,搭建电力电子控制系统的仿真模型时,需要考虑电力电子系统的实际情况,让仿真模型的仿真速率是与实际情况相符,这样仿真结果才能准确反映真实的变化。

如果想要查看Simulink模型中不同模块的仿真速率,可以点击Simulink的左侧模型的图标,选择Colors即可。从下图的右侧可以看到,这个模型有Continuous的部分,也有Discrete的部分(仿真步长200µs)。其他的还有Constant和Multrate(多速率)的部分。

图片

在搭建多速率仿真模型时,不同仿真速率的仿真模型通过Simulink的Rate Transition模块进行连接,具体的使用请参考MATLAB的Help文件。

图片

Rate Transition模块

同步和异步

同步和异步是一个相对的概念,例如异步中断,同步任务等。因此需要弄清楚,相对什么是任务是同步的,相对什么中断是异步的。还是以永磁同步电机控制系统的仿真模型来说明。

下图是常规永磁同步电机控制的实际流程包括以下几个步骤**:**

1 . 采样和保持电机电流值,ADC转换电机电流值;

2 . 读取电机速度和位置值(图中未标出);

3 . 运行电机控制和SVPWM算法;

4 . 输出和更新PWM占空比;

其中步骤1的电流采样和步骤4的更新PWM占空比必须在同一时刻完成的。

图片

PMSM电机控制的流程

因此我们可以知道,如何把电机控制算法看作一个任务,这个任务相对被控对象模型就是异步的。但是这个任务相对于PWM-Timer却是同步的。

现在,我们已经知道了永磁同步电机控制系统的实际情况,下面我们就来进行建模。

永磁同步电机控制系统仿真参数

确定系统参数如下:

1.jpg

表1 永磁同步电机控制系统参数

根据PWM开关频率和PWM比较器时钟频率,可以确定PWM比较器的三角波底点值为0,顶点值约为833。因此确定实际的控制周期为83.3µs,在PWM比较器的三角波的地点和顶点各对永磁电机进行一次控制。

因此确定整个系统仿真模型的仿真参数:

1 . 被控对象的仿真步长为100ns;

2 . PWM比较器的仿真步长为100ns;

3 . 控制器的仿真步长为83.3µs;

控制器仿真模型通过PWM比较器通过异步中断的方式触发运行。

永磁同步电机控制系统模型概述

为保证每个控制时刻电流采样与PWM信号的同步,在模型搭建时可以采用Function Call子系统或者Enable子系统,如下图所示,此时PMSM Controller的运行不与时间同步,而与PWM比较器输出的trigger同步(图中的from模块的INT标识)

图片

基于Function Call的PMSM控制器模型

图片

PWM比较器产生控制器模型触发信号

整个系统仿真模型建模完成后,点击Simulink的左侧模型的图标,选择Colors,查看Simulink模型中不同模块的仿真速率。如下图所示,其中红色表示仿真步长为0.1µs。粉红色表示仿真步长为constant(常值),一般为仿真模型一些Constant模块的仿真步长。最下面青色的就是控制器模型的仿真步长为Triggered,即中断触发的运行方式,其中断源来自D1(即仿真步长为0.1µs的模块),也是就仿真步长为0.1µs的PWM比较器产生的。

图片

永磁同步电机控制系统仿真模型的仿真步长

各种模式的仿真结果

下面比较定子频率400Hz下,两种仿真模式下的仿真结果,让大家明白其中的差异。

图片

仿真模式1:控制器通过中断触发方式运行:电机电流波形(整体)

图片

仿真模式1:控制器通过中断触发方式运行:电机电流波形(峰值)

图片

仿真模式2:控制器通过非中断触发方式运行:电机电流波形(整体)

图片

仿真模式2:控制器通过非中断触发方式运行:电机电流波形(峰值)

图片

仿真模式1:控制器通过中断触发方式运行:电机电流波形,电机电流采样波形,三角波

图片

仿真模式2:控制器通过非中断触发方式运行:电机电流波形,电机电流采样波形,三角波

差异如下:

  • 采用中断触发方式建模和仿真,电机电流的峰值有大约3A(0.83%)的波动;

  • 采用非中断触发方式建模和仿真,电机电流的峰值有35A(9.72%)的低频波动;

  • 采用中断触发方式建模和仿真,电机电流的采样值在三角波的底点和顶点;

  • 采用非中断触发方式建模和仿真,电机电流的采样值与三角波的底点和顶点无关;

如何大家观察电机转矩的波形可以看到更为明显的低频波动现象。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    供了单独励磁直流电机的性能和简便性。 整个驱动系统包括以下主要子系统: 调速器 扭力控制器磁控制器 电流控制器 PWM门控信号发生器 电压源逆变器(VSI) 永磁同步电机 电池组 负载 电路 使用方法: 1.从网......
    永磁同步电机电压反馈弱磁控制中电压环的分析;1 前言 永磁同步电机的弱磁控制主要由两种方式,一种是基于前馈的,一种是基于反馈的。前馈弱磁控制使用电机的精确参数建模,生成电机运行时的电流指令。这种......
    微波炉工作电路原理图;分享微波炉的工作电路原理图,微波炉的电路组成与工作原理,家用微波炉基本上都采用箱式结构,一种普及型微波炉电路的电路结构与电路原理图。 微波炉工作电路的原理图 微波......
    转速   永磁同步电机弱磁控制   磁同步电机弱磁控制是指在永磁同步电机的控制中,采用降低永磁体磁场强度的方法来实现控制。其基本原理是在恒定的电压和频率下,通过改变永磁体的磁场强度,从而......
    电流变化的动态分量,SPMSM的稳态电压方程为: 在《永磁同步电机弱磁控制-基本概念》中,我们介绍了高速需要进行弱磁控制的原因是为了防止输出电压过饱和而导致的电流环失控,所以弱磁控制就是通过人为的改变电流给定以减小Ud......
    控制系统的原理构成如图1所示,它包括主电路、伺服控制单元、功率驱动单元、保护单元以及信号反馈采集单元。 伺服控制单元包括位置控制器、速度控制器、转矩和电流控制器等。STM32 Cortex-M3以其......
    的优势在于能够执行浮点运算,提高了代码的运算效率。 基于FOC的矢量控制技术、无速度传感器控制技术、直接转矩控制技术、多相电机控制技术、弱磁控制技术等等这些大家热切关注的内容都将在本次培训中进行深度解读,并结合永磁......
    公式。 图6表明,电机产生的反电动势在5s时被电池电压到极限,此后,电机处于弱磁控制模式,可以使速度进一步增加,但是理论值与实际值之间的误差会增大。仿真结果同时表明,电机电流在达到设置的最大300A......
    电机,及其硬件实验测试平台,如下图5所示。另外,该硬件实验测试系统,主要包括直流电源、驱动器、控制器、两种磁通切换永磁电机、伺服电机、增磁和去磁装置、示波器、电流钳、转矩转速测试仪、编程器(电脑)组成......
    控制器;开发板提供配套资料(含原理图一份、测试源代码一份),向用户提供可靠的学习与设计参考。 课程配套使用电机驱动板(需另......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>