面向电路的噪声耦合抑制技术

发布时间:2022-12-16  

任何在示波器上仔细观察过低电平信号读数的人都会熟悉电子电路中可能出现的。出现的各种固有的源在低信号电平下十分明显。在其他以典型逻辑电平运行的系统中,由于电磁干扰和电路之间的耦合,会产生外在。这些噪声源都需要一个特定的电路或策略来降低耦合强度或减少噪声,或两者兼而有之。

本文引用地址:


本文要点


●  电子产品中有许多噪声源,可能出现在系统内部和外部。

●  噪声耦合抑制技术在电路设计层面和物理布线中实施,以抑制特定的噪声源。

●  可以通过布线前和布线后仿真来评估噪声耦合抑制技术的有效性。


任何在示波器上仔细观察过低电平信号读数的人都会熟悉电子电路中可能出现的噪声。出现的各种固有的噪声源在低信号电平下十分明显。在其他以典型逻辑电平运行的系统中,由于电磁干扰和电路之间的耦合,会产生外在噪声。这些噪声源都需要一个特定的电路或策略来降低耦合强度或减少噪声,或两者兼而有之。


噪声耦合抑制技术涉及设计特定电路、使用特定的器件,或在物理布线中放置一些结构来抑制特定的噪声源。对于 PCB 设计师来说,修改物理布线以尽量抑制各种噪声源非常简单。本文将介绍可以使用哪些工具来抑制系统中不同类型的噪声。


将噪声耦合抑制技术与噪声源相匹配


噪声通常是指出现在互连或电路中的任何不需要的信号,并且可以有多个来源。有时,除非掌握必要的信息,否则很难为特定的噪声确定具体的来源。当在电路或互连中检测到噪声时,最好了解是哪种耦合机制带来了不必要的噪声。


面向电路的噪声耦合抑制技术


所有的电子噪声最后都会导致在接收器上读到不需要的信号,这意味着某种机制在受干扰电路或互连中诱发了一些电压/电流。噪声通过三种可能的机制耦合:


传导:由于噪声源和受干扰电路之间的直接接触,在一个电路中产生的任何噪声电流都可以传导到另一个电路。


电场耦合:一般是指由于电场的存在而在电介质中感应出位移电流。在电路模型方面,电场耦合指的是通过寄生电容耦合。


磁场耦合:变化的磁场可以通过法拉第定律在导体中诱发电流,而不需要噪声源和受干扰电路之间有直接接触。


第一种被称为传导型 EMI,它依赖于噪声源和受干扰互连/电路之间的直接接触。后两种会将辐射型 EMI 耦合到电路中,这是指没有传导到受干扰电路或互连的噪声。


由于辐射型 EMI 可以诱发电流和电压,一开始的辐射型 EMI 可以作为传导型 EMI 被接收。这意味着有两种方法来消除电子电路中的噪声:


●  防止辐射型 EMI 以电容和电感方式诱发电路中的噪声。

●  抑制任何传导型 EMI,不管它是如何在电路中产生的。

●  接下来了解一下可以抑制电子系统中这两种类型噪声的布线策略。


滤波电路


滤波电路是消除传导型 EMI 的经典方法,因为滤波器直接作用于电路中的电压/电流。滤波器可以是宽带的,如低/高通滤波器,或极窄带的,如陷波滤波器。EMI 滤波器可以是单一器件,如共模扼流圈,或是涉及多个器件的复杂电路。这些电路可以针对单一频率或较宽的频率范围来使用。


面向电路的噪声耦合抑制技术


滤波电路可以消除源自辐射型 EMI 的传导型 EMI。通过这种方式,滤波电路抑制了来自电路 1 和电路 2 的任何噪声耦合。


印刷屏蔽结构


这个方法听起来略显陌生,但它通常是指 PCB 上任何可以对辐射型 EMI 提供屏蔽的结构。这些结构的目的是改变 PCB layout 中的寄生效应,从而阻断电磁感应的电流。这种结构的例子包括:


●  电子带隙结构

●  表层覆铜接地

●  额外的平面层

●  沿着波导或天线馈线等重要互连的过孔栅栏

●  重新设计互连结构


这种方法的目标是抑制导致磁耦合或电耦合的寄生效应。要成功做到这一点,需要从物理布线中提取寄生电容和电感的模型。互连阻抗取决于自电感和自电容的值,而寄生效应总是会导致互连阻抗与期望值有所偏差。一些额外的印刷结构或重新设计互连的几何形状有助于减少寄生效应,并减少通过辐射型 EMI 耦合到互连的任何噪声的强度。


总结


综上所述,没有哪种特定的技术可以抑制所有形式的噪声耦合。在系统中使用哪种具体的噪声耦合抑制技术,取决于所涉及的特定噪声源和电路间耦合的功率。我们通过下列表格对上文讨论的噪声源和抑制方法进行了简要总结。


面向电路的噪声耦合抑制技术


如果有了合适的降噪技术,并准备在系统中进行验证,最好在做原型设计之前使用仿真来对设计进行评估。传导型 EMI 可以在电路仿真中用 SPICE 进行检查。对于其他噪声源而言,除非有一个准确的电路模型来描述系统,否则无法在电路层面上进行检查。因为这些其他的抑制机制取决于精确的物理布线,所以需要用 3D 场求解器来全面评估许多噪声抑制技术的有效性。对于 PCB 设计工程师来说,最好的场求解器应用可以直接在 PCB 设计工具内使用,并能直接根据布线数据运行模型。


无论需要解决什么噪声源,都可以使用具有集成 3D 电磁场求解器和全套 CAD 工具的 PCB 设计和分析软件来应用这些噪声耦合抑制技术。Cadence 可以提供强大的软件,自动执行系统分析中许多重要的任务,包括一系列布线前和布线后仿真功能,顺利完成系统评估。

(来源: Cadence楷登PCB及封装资源中心)

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    针对噪声模拟设计的 ASIC 修复;噪声是混合信号 中的一个常见问题,会降低性能并危及产品的完成度。本应用笔记提供了添加外部电路的提示和技巧,使许多 可用于原型设计或作为终产品进行交付。讨论了通过校正模拟电路中的噪声......
    。 将噪声耦合抑制技术与噪声源相匹配 噪声通常是指出现在互连或电路中的任何不需要的信号,并且可以有多个来源。有时,除非掌握必要的信息,否则很难为特定的噪声......
    与隔离度性能 将转角频率、1/f 噪声密度、宽带噪声密度代入式2-51 、2-53 ,可以计算1Hz 至1KHz 的总噪声RMS 值为: 放大器电路噪声分析 在放大器工作电路中呈现的总噪声是包括电流噪声......
    都有一个接地夹,它与探头正极形成的环路,环路面积越大,其他信号分量就越多,噪声辐射到信号的回路中的可能性越大,导致错误的测试结果。 还有一种说法,如果板子上的高频信号穿过,会在示波器上形成比噪声信号还要大的电压,因此......
    什么是量化噪声的功率谱?;对于 DAC 应用,希望来自 DAC 的噪声占主导地位,并且人们不希望仅仅为了确保传输的噪声频谱是白噪声而在链的后面添加噪声。本文引用地址:在检查数据转换器的性能时,经常......
    哪些因素会影响信号完整性的测量;我们经常听到身边的硬件工程师们提到关于信号完整性的话题。 那么信号完整性具体是指什么呢? 信号完整性(Signal Integrity:简称SI),指信......
    每个输入都增加了相同电压,因此它们在输出端表现为直流共模。然而,除了U1和U2差分级会进一步放大额外噪声之外,U3和U4还会在电路中产生额外的功耗。不过,它非常简单,并且不会影响整体信号增益。对于图6中的电路,信号增益为Av......
    遇到的一个问题是如何提高准确度和精度,并最大限度降低系统噪声。鉴于不同的人对“噪声”这个术语有不同的理解,我在此声明,本篇文章讲述的噪声是指电路中电阻器和晶体管所产生的低频热噪声。您通常可将噪声频谱密度曲线(以微伏/平方根赫兹为单位)中......
    带宽(ENBW)是理想的实际滤波器的截止频率fC,其噪声功率近似等于原始滤波器的噪声功率H(f)。 作为类比,您可考虑一下在寒冷的夜晚您家中的情况。为降低能源成本并节省资金,您需......
    的增益,使电路能在比较短的积分时间内,读出PA级的电流,电路中的积分电容要非常小。同时为了提高信噪比,在减小积分电容的同时,电路噪声也要减小。在新型电路结构中,采用T型网络电容加nmos开关......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>