STM32F0使用LL库实现DMA方式AD采集

发布时间:2022-12-12  

在本次项目中,限于空间要求我们选用了STM32F030F4作为控制芯片。这款MCU不但封装紧凑,而且自带的Flash空间也非常有限,所以我们选择了LL库实现。在本文中我们将介绍基于LL库的ADC的DMA采集方式。


1、概述

这次我们使用DMA方式实现对AD的采集,在遗忘我们使用HAL库和标准库都做过,这次我们使用LL库来实现。接下来我们简单了解一下STM32F030F4中的ADC和DMA。


首先看一看ADC,STM32F030F4是12位的ADC。它有多达19个多路复用通道,允许它测量来自16个外部和2个内部源的信号。各种通道的A/D转换可采用单通道、连续通道、扫描通道或不连续通道进行。ADC的结果存储在左对齐或右对齐的16位数据寄存器中。ADC结构图如下:

这次我们只使用第1路外部输入。接下来说一说DMA,直接内存访问(DMA)用于在外设和内存以及内存到内存之间提供高速数据传输。DMA可以在没有任何CPU操作的情况下快速移动数据。这使CPU资源可以用于其他操作。STM32F030F4中的DMA控制器有5个通道,每个通道用于管理来自一个或多个外围设备的内存访问请求。它有一个仲裁器来处理DMA请求之间的优先级。DMA结构图如下:

这次我们也使用DMA的第1通道。


2、ADC配置

在使用之前我们需要对ADC和DMA的相关寄存器惊醒必要的配置,才能实现我们想要的功能。我们来看看ADC需要配置的寄存器。ADC需要注意的寄存器主要有两个:ADC控制寄存器(ADC_CR)和ADC配置寄存器1(ADC_CFGR1)。首先我们来说说ADC控制寄存器(ADC_CR),器结构如下:

关于ADC控制寄存器(ADC_CR),有几个设置需要说明一下。

ADCAL:ADC校准,设置该位可以软件启动校准,校准完成硬件会复位掉这一位。需要注意的是只有ADC处于失能状态,软件对ADCAL的操作才是有效的。也就是说软件对ADCAL操作时,ADC控制寄存器(ADC_CR)必须是全复位状态,即ADCAL=0,ADSTART=0,ADSTP=0, ADDIS=0和 ADEN=0。


ADSTART: ADC启动转换命令。需要注意只有在ADC已启用,并且没有禁用ADC的挂起请求。也就是说ADEN=1和ADDIS=0时,软件对ADSTART的操作才有效。


ADEN: ADC使能命令。只有在ADC控制寄存器(ADC_CR)处于全复位状态,即ADCAL=0,ADSTART=0,ADSTP=0,ADDIS=0 和 ADEN=0下,软件对ADEN的操作才有效。这就有一个问题,如果你使用了ADCAL必须等校准完成,才能使能,否则无效。


接下来我们看一看ADC配置寄存器1(ADC_CFGR1),其结构如下:

关于ADC配置寄存器1(ADC_CFGR1),我们需要关注:CONT(转换模式)、EXTEN[1:0](外部触发使能)、DMACFG(DMA访问配置)、DMAEN(DMA访问使能)。需要说明的是,这几个配置都必须在启动转换前完成配置,即配置时ADSTART=0。


3、DMA配置

配置了ADC还需要配置DMA才能实现我们的想法。关于DMA的配置我们主要说一下4个寄存器:DMA通道配置寄存器(DMA_CCRx)、DMA通道数据数量寄存器(DMA_CNDTRx)、DMA通道外设地址寄存器(DMA_CPARx)、DMA通道内存地址寄存器(DMA_CMARx)。


首先,我们来看看DMA通道配置寄存器(DMA_CCRx),其结构如下:

对于DMA通道配置寄存器(DMA_CCRx),我们需要关注如下位:MSIZE[1:0](内存大小)、PSIZE[1:0] (外设大小)、MINC(内存的增加模式)、PINC(外设增加模式)、CIRC(循环模式)、DIR(数据传输方向)、EN(通道使能)。除通道使能外,其它均可通过初始化函数进行配置。


接下来,我们来看看DMA通道数据数量寄存器(DMA_CNDTRx),其结构如下:

其实DMA通道数据数量寄存器(DMA_CNDTRx)用于配置传送数据的个数,如果是往内存中写,就是内存缓冲区的大小,单位与配置寄存器中MSIZE和PSIZE有关。接下来,我们来看一看DMA通道外设地址寄存器(DMA_CPARx),其结构如下:

对于DMA通道外设地址寄存器(DMA_CPARx),就是存储外设的地址,如果我们的外设是ADC,那就是ADC的地址。最后,我们来看一看DMA通道内存地址寄存器(DMA_CMARx),其结构如下:

对于DMA通道内存地址寄存器(DMA_CMARx),其存储的就是对应的变量在内存中的地址,就是我们开辟的数据缓存区的首地址。


4、软件实现

我们已经说明了ADC和DMA的配置,在这一小节,我们将根据我们前面的分析实现代码。首先来实现ADC的配置代码。

配置后,ADC的寄存器如下:

配置后,DMA的寄存器如下:

其实,到这里ADC采集世纪上已经实现了,DMA已经将数据从ADC读出来存到了指定的内存区域,后续的处理就很简单了。


5、总结

我们已经实现了基于LL库使用DMA方式获取ADC的数据。下面我们就下载到目标设备并检测一下结果。测试结果如下:

上图中,上部是计算完成的物理量值,下部则是DMA写到内存缓存区的ADC的原始码值。

文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>