中科院:上海光机所计算光刻技术研究取得进展

发布时间:2021-06-11  

近日,中国科学院上海光学精密机械研究所信息光学与光电技术实验室提出一种基于虚拟边(Virtual Edge)与双采样率像素化掩模图形(Mask pixelation with two-phase sampling)的快速光学邻近效应修正技术(Optical proximity correction, OPC),仿真结果表明该技术具有较高的修正效率。

光刻是极大规模集成电路制造的关键技术之一,光刻分辨率决定集成电路的特征尺寸。随着集成电路图形的特征尺寸不断减小,光刻系统的衍射受限属性导致明显的光学邻近效应,降低了光刻成像质量。在光刻机软硬件不变的情况下,采用数学模型和软件算法对照明模式、掩模图形与工艺参数等进行优化,可有效提高光刻分辨率、增大工艺窗口,此类技术即计算光刻技术(Computational Lithography)。该技术被认为是推动集成电路芯片按照摩尔定律继续发展的新动力。

OPC技术通过调整掩模图形的透过率分布修正光学邻近效应,从而提高成像质量。基于模型的OPC技术是实现90nm及以下技术节点集成电路制造的关键计算光刻技术之一。上海光机所科研人员提出的这种基于虚拟边与双采样率像素化掩模图形的快速光学邻近效应修正技术,能够将不同类型的成像失真归结为两种类型的成像异常,即内缩异常与外扩异常。利用不同的成像异常检测模板,依次在掩模图形的边缘和拐角等轮廓偏移判断位置进行局部成像异常检测,确定异常类型及异常区域的范围。根据异常检测位置与异常区域范围,自适应产生虚拟边。通过移动虚拟边调整掩模的局部透过率分布,从而修正局部成像异常。借助修正策略和修正约束,实现高效的局部修正和全局轮廓保真度控制。另外,双采样率像素化掩模充分利用了成像系统的衍射受限属性,在粗采样网格上进行成像计算与异常检测,在精采样网格上进行掩模修正,兼顾了成像计算效率与掩模修正分辨率。利用多种掩模图形进行验证,仿真结果表明该OPC技术的修正效率优于常用的基于启发式算法的OPC技术。

相关研究成果发表在Optics Express上。研究工作得到国家重大科技专项和上海市自然科学基金项目的支持。

基于虚拟边的成像异常修正,(a)外扩异常修正,(b)内缩异常修正,图片来源:中国科学院

封面图片来源:拍信网

文章来源于:全球半导体观察    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>