基于电子齿轮的定长切割装置控制方法优化研究

发布时间:2022-12-25  


本文引用地址:

0   引言

因其具有控制精度高、高速运行稳定等优点在烟草包装机中得到大量应用[1-2],传统的凸轮、齿轮等机械结构逐渐被所取代。根据卷烟包装的发展需求,卷烟厂为了实现更加丰富的烟盒包装形式,包装材料如、盒外透明纸等逐渐由传统的无图案变为有特殊图案或活动宣传二维码。这就需要对、透明纸等包装材料进行固定长度的裁切,且使得每一个裁切下来的纸张上的图案均在同一位置,这就是功能,对于卷烟包装设备,各原辅材料裁切误差一般不超过±0.5 mm。

本文基于ZB48A 型卷烟包装机组,设计了一种基于的装置,采用取代常规的机械齿轮对内框纸输送辊进行控制,对传统的切换凸轮曲线控制方法进行优化,实现了更高的控制精度和电机稳定性。

1   定长切割装置

内框纸定长切割装置主要包括内框纸输送辊伺服电机、色标检测器及放大器等,切刀辊则通过机械连轴跟随主电机运动,控制系统硬件包括伺服控制器、伺服驱动器、伺服电机、PLC。伺服控制器与驱动器之间采用SERCOSⅢ 总线通讯,SERCOSⅢ 的循环扫描时间为1 ms,PLC 与伺服系统之间采用EtherCAT 总线通讯。

1671938398798182.png

通过将色标传感器感应到内框纸上的色标标记时伺服电机逻辑编码器位置与计算得到的标准位置进行比较,得到该工位上偏差值,通过控制输送辊输送快慢改变输送长度以补偿该偏差值,使得每个工位上的内框纸长度保持一致的同时每张内框纸上图案偏差在要求的±0.5 mm 以内。

2   控制策略

2.1 伺服电机控制策略

单电机伺服控制采用电流、速度、位置的三环控制[3]。电流环为三环控制中的最内环也是最复杂的一环,将采集到的U、V、W 三相电流经Clark 变换为静止坐标系αβ 下的两相正交电流之后,再经Park 变换转换为d、q 轴电流,将得到的d 轴电流与给定电流值比较得到d轴电流偏差值,得到的q 轴电流与0 作比较得到q 轴电流偏差值。d 轴与q 轴电流偏差值经PI 控制器后将所得d、q 轴电流修正值,之后经过逆Park、逆Clarke 变换得到目标UVW 三相电流,而三相电流直接决定了电机的扭矩出力。速度环是将当前速度值与目标速度值进行比较得到速度偏差值,之后经PI 控制器得到速度修正值送入电流环,通过控制伺服电机电流达到控制电机转速的目的。位置环是三环控制中的最外环,通过将当前电机位置与目标位置进行比较,经PI 控制器之后得到位置修正值,通过控制电机速度使电机至运行目标位置。伺服电机的三环控制都在伺服驱动器中实现[4]

2.2 改进前的定长切割控制方法

定长切割方法主要是直接参与伺服电机三环控制中的位置环控制,通过控制伺服电机位置进而控制电机转速,目标速度决定了电流环的目标电流[5]。根据内框纸切割长度及色标在内框纸上的位置,可由式(1)计算得出电机目标位置,将由电机编码器反馈的当前位置与目标位置作比较,计算得出位置偏差值。将该偏差值作为运行在下的从轴周期长度的补偿值,进而得出下一周期的新的周期长度,使得从轴电机的电子齿轮根据补偿值不断变化。但这种控制方法只能将本周期计算得到的补偿值在下个周期进行电子齿轮的切换,由于ZB48A 机组内框纸部件速度较快,可达700包/min,尤其当触发检测的标位处于周期的前端时,会导致纠偏时间间隔较长,而在这段时间内内框纸偏移量可能已经发生改变。如果不能及时将补偿值加入反馈中进行纠偏,会使得电机累计误差不断增大,内框纸会发生堵塞、断裂等情况,进而影响机组稳定运行[6]

1671938568417413.png

其中,Pref为电机目标位置;Pmark为色标传感器感应时电机位置;Cvel为主轴速度矫正系数;Lframe为内框纸长度;F为电机进给周期常数。

2.3 改进后的定长切割控制方法

改进后的定长切割控制框图如图2所示,在位置、速度、电流三环控制的基础上,在位置反馈上添加YOffset 环节,通过伺服电编码器获得实际色标位置与给定色标位置进行比较,从而触发YOffset 使能。其中, mechanic 为电流环干扰,包括负载转矩J-Load、齿轮转矩J-Gear、齿轮比GearIn/GearOut 以及进给常量FeedConstant 等。电机编码器获取电机位置P_Feedback 进行反馈,通过与时间微分得到速度的反馈值V_Feedback。改进后的控制策略可改善改进前切换电子齿轮方法无法在当前周期就对当前检测出的偏离值进行纠偏的缺点,避免了累加误差的产生。

1671938485241769.png

3   软件实现

采用施耐德运动控制软件Somachine Motion 进行伺服程序的编写与设计, 编程语言和规范符合IEC61131-3 标准,PLC 程序采用TWINCAT3 进行编写调试。逻辑控制总体框图如图3 所示,分为标位功能启用与不启用两种模式,其中标位功能启用时,由于伺服电机与内框纸输送辊连接,因此从轴电机与主轴啮合采用的为热启动模式,即伺服电机需要在啮合过程中转动到与主轴匹配的相位,这样不仅可以实现电气位置的啮合,也实现了机械结构上位置的啮合。不启用色标功能时采用冷启动模式,即直接将电机逻辑编码器位置写为与主轴位置匹配的位置度数,只需要电气意义上的啮合,不需要机械结构上位置的啮合。

image.png

YOff set部分的控制逻辑如图4 所示,其中Threshold为触发补偿纠偏的阈值,Reject为触发剔除的阈值。判断标位是否抓取成功,如果色标传感器连续三次没有捕获到色标则报错停机;判断抓取到的偏差值是否大于剔除阈值,如果连续剔除过多,则报错停机。因此,只有偏差值在Threshold和Reject之间时YOff set才会对偏差进行补偿。

image.png

4   样机试验

如图5为内框纸定长切割装置样机,采用施耐德LMC300伺服控制器,LXM52驱动器,伺服电机采用SH3系列电机,PLC控制采用倍福CX2030 系列。

1671965024507894.png

图5 试验样机

4.1 试验条件

试验样机为ZB48A机组,试验速度为600包/min,内框纸规格为35.5mm,试验控制参数如表1 所示。

1671965104749749.png

4.2 试验结果

图6 和图7 分别为利用下一周期切换电子齿轮NewCam方法和优化后的YOffset方法控制下的电机运行状态波形,从图中可以看出,利用NewCam方法控制下的电机由于累计误差的产生导致补偿纠偏较为频繁,且从轴电机与主轴之间的跟随误差在±0.1之间,这就会导致累计误差增大与补偿频繁之间的循环。优化后的YOffset控制下的电机可在当前周期就将偏差值补偿,因此补偿纠偏的频率大大减少,且从轴电机的跟随误差只有±0.01。

1671965157342916.png

图6 NewCam控制下的定长切割

1671965193968482.png

图7 YOffset控制下的定长切割

样机存在左右两卷内框纸材料,当一卷检测到直径达到最低限度或检测到由于原辅材料制作产生的内部接头时会产生拼接动作[7-8]。对于内框纸定长切割装置而言,必须在新的一卷内框纸输送前进行重新再次寻零,如图8为拼接发生时伺服电机运行参数波形图。

image.png

图8 左右卷筒内框纸拼接

从图中可以看出,拼接开始时,主轴首先进行降速,经过7 个工位之后伺服电机切换到stop 曲线停止运行准备进行新的寻零动作,此时主轴继续保持运行以将前一卷残留的内框纸材料开完给新一卷的材料预留寻零空间,此时切割出来的内框纸需要进行剔除。在拼接开始13 个工位之后,主轴停机,此时从轴伺服进行寻零,寻零完成后,主从轴啮合动作,继续进行定长切割运转,最先切割出的两张内框纸需要剔除。

5   结束语

通过试验可以看出,优化后的方法使得内框纸定长切割的精确度更高,且电机与主轴之间的跟随性更好,机组运行时因内框纸定长装置导致的堵车、断裂进而停车的故障率更低,降低了烟包剔除率及故障停机导致的经济损失。目前,该内框纸定长切割装置已在柳州卷烟厂、昭通卷烟厂等正常生产使用。

参考文献:

[1] 陈奕建,闭传琦,杨保海,等.伺服电机控制系统的设计[J].电子制作,2022,30(5):68-70.

[2] 寇宝泉,程树康.交流伺服电机及其控制[M].北京:机械工业出版社,2008.

[3] 黄玉钏,曲道奎,徐方,等.伺服电机的预测控制与比例-积分-微分控制[J].计算机应用,2012,32(10):2944-2947.

[4] 龚佳伟.基于电子齿轮的卷烟包装机输出通道优化设计[J].制造业自动化,2017,39(9):26-29.

[5] NIU M, ZHOU Y, CHEN L, et al. Research on servo control system of electromechanical actuators with compound control and three closed-loop[C].2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 2018.

[6] 徐国现,陈圣,权发香,等.FOCKE350内框纸接头新型检测装置的研制[J].设备管理与维修,2021(15):29-32.

[7] 韩芸,陈黎.ZB48型硬盒硬条包装机组(电气部分)上册[M].郑州:河南科学技术出版社,2021.

[8] 韩芸,陈黎.ZB48型硬盒硬条包装机组(电气部分)下册[M].郑州:河南科学技术出版社,2021.

(本文来源于《电子产品世界》杂志2022年12月期)

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    脉冲信号被控制系统采集、处理,发出一系列指令,调整改变设备的运行状态。如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线运动部件的位置、位移物理量。 编码器分类 编码器基本分类 编码......
    脉冲信号被控制系统采集、处理,发出一系列指令,调整改变设备的运行状态。如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线运动部件的位置、位移物理量。 二、编码器分类 编码器基本分类 编码......
    不同的齿轮传动方式的原理解析;齿轮传动是指由齿轮副传递运动和动力的装置,它是现代各种设备中应用最广泛的一种机械传动方式。它的传动比较准确,效率高,结构紧凑,工作可靠,寿命长。 齿轮......
    行星齿轮电机工作原理;行星齿轮的应用 这些齿轮有时被称为“外摆线”齿轮,旋转行星上的点在旋转时跟踪外摆线曲线,术语“行星”也适用,整个组件围绕中心太阳齿轮的旋转动作模仿了太阳系的运动,行星齿轮......
    如何使用步进电机解决尺寸和重量增加的负载问题;如何使用步进电机解决尺寸和重量增加的负载问题 增加尺寸和重量会增加负载的惯性和移动负载所需的扭矩。齿轮传动是克服大惯性负载的一个很好的选择,因为它会通过齿轮......
    音等优点,广泛用于电机、汽车、机器人及各种工业机械中,以实现高效率和稳定性。 一、什么是行星减速机? 带太阳齿轮/行星齿轮/齿圈的机械装置。行星减速机是由太阳齿轮,行星齿轮的齿轮......
    器是由一个高速输入驱动一个输出轴的装置,它通常被设计成一个几何图形中的一个宏大的齿轮,这个齿轮的齿数是与输入的齿轮数量相等的。齿轮的运动原理可以简单地描述为一种「大地辗转」的工作方式,即输入轴齿轮的旋转引起输出轴齿轮的旋转。 1.2......
    包含速度控制功能的电机的引入,减速机的主要作用是放大扭矩。 但随着步进电机被广泛接受以满足速度和位置控制的要求,减速机找到了新的用途,包括扭矩的放大、允许的惯量的改进和电机振动的减少。此外,与交流电机的传统齿轮......
    什么是齿轮齿条驱动系统?APEX精密齿轮齿条特点和使用注意事项;一、什么是齿轮齿条驱动系统? 齿轮齿条驱动系统由齿条(或“线性齿轮”)和小齿轮(或“圆形齿轮”)组成。工作原理是将齿轮......
    电机更精确地控制负载并避免过冲和振荡,提高系统响应性。如果不能改变负载的实际惯性,则在系统中增加一个减速机可以减少反射回电机的负载惯量。 APEX行星减速机 变速箱通过齿轮比的平方减小反射负载惯性,因此......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>