适用于自主驾驶车辆LiDAR的GaN FET快速指南

发布时间:2024-02-27  

激光探测及测距 () 的应用包括车辆、无人机、仓库自动化和精准农业。在这些应用中,大多都有人类参与其中,因此人们担心 激光可能会对眼睛造成伤害。为防止此类伤害,汽车 系统必须符合 IEC 60825-1 1 类安全要求,同时发射功率不超过 200 W。

通用解决方案一般采用 1 至 2 ns 脉冲,重复频率为 1 至 2 MHz。这很有挑战性,因为需要使用微控制器或其他大型数字集成电路 (IC) 来控制激光二极管,但又不能直接驱动它,这样就必须增加一个栅极驱动电路。此外,还必须优化栅极驱动器的设计,确保 LiDAR 系统的性能适用于汽车工程师协会 (SAE) 3 级及以上级别的高级辅助驾驶系统 (ADAS)。

使用分立元器件来设计符合 IEC 60825-1 安全要求的大功率、高性能栅极驱动器既复杂又耗时,可能还会增加成本,延长产品上市时间。为了应对这些挑战,设计人员可以采用集成式高速栅极驱动器 IC,将其与氮化镓 () 功率场效应晶体管 () 搭配使用。使用集成式解决方案不仅能最大限度地减少降低驱动信号完整性的寄生效应,尤其是在大电流激光功率回路中,而且还能将大电流驱动器安装在靠近电源开关的位置,从而尽可能减少高频开关噪声的影响。

本文简要介绍了 LiDAR,还讨论了相关应用和安全要求,然后以大电流激光功率回路为重点,回顾了设计汽车 LiDAR 所面临的挑战。随后介绍了 Efficient Power Conversion (EPC)、Excelitas Technologies、ams OSRAM 和 Texas Instruments 的 LiDAR 解决方案,其中包括 功率 、栅极驱动器和激光二极管,以及评估板和用于加快开发过程的实施指导。

LiDAR 的工作原理

LiDAR 系统可测量激光束脉冲的往返飞行时间 (ToF) (Δt),以此来计算与物体的距离(图 1)。距离 (d) 的计算公式为 d = c * Δt/2,其中 c 表示空气中的光速。短脉冲持续时间是 LiDAR 的关键参数之一。鉴于光速约为 30 cm/ns,那么 1 ns LiDAR 脉冲的长度约为 30 cm。这将可分辨的最小特征尺寸下限设定为 15 cm 左右。因此,LiDAR 脉冲必须限制在几纳秒以内,才能对人体尺度的环境产生有用的分辨率。

本文引用地址:


适用于自主驾驶车辆LiDAR的GaN FET快速指南

图 1:LiDAR 利用 ToF 测量来探测物体并确定其距离。(图片来源:ams OSRAM)


脉冲宽度、峰值功率、重复频率和占空比是 LiDAR 的主要技术参数。例如,LiDAR 系统中使用的典型激光二极管可能具有 100 ns 或更小的脉冲宽度、高于 100 W 的峰值功率、1 kHz 或更高的重复频率以及 0.2% 的占空比。峰值功率越高,LiDAR 的探测距离就越长,但同时还要权衡散热性能。对于 100 ns 脉冲宽度,平均占空比通常限制在 0.1% 至 0.2%,以防止激光器过热。更短的脉冲宽度对于提高 LiDAR 的安全性也有帮助。

IEC 60825-1 以最大允许照射量 (MPE) 定义激光安全性,该参数表示造成眼损伤的概率可忽略不计的光源的最高能量密度或功率。为了达到可忽略不计的程度,MPE 功率水平被限制在有 50% 的概率造成眼损伤的能量密度的约 10% 内。在功率水平不变的情况下,脉冲宽度越短,平均能量密度就越低,也就越安全。

单次 LiDAR ToF 测量可以确定与物体的距离,而数千或数百万次 LiDAR ToF 测量则可用于创建一个三维 (3-D) 点云(图 2)。点云集合了存储着大量信息的数据点,我们将这些数据点称为成分。每个成分都包含一个描述属性的值。这些成分可能包括 x、y 和 z 坐标,以及强度、颜色和时间信息(用于测量物体的移动)。LiDAR 点云可创建目标区域的实时三维模型。


适用于自主驾驶车辆LiDAR的GaN FET快速指南

图 2:LiDAR 系统结合大量 ToF 测量数据,创建目标区域的三维点云和图像。(图片来源:EPC)


使用 为 LiDAR 激光器供电

GaN FET 的开关速度比硅 FET 快得多,因此适用于需要极窄脉冲宽度的 LiDAR 应用。例如,EPC 的 EPC2252 就是一款通过 AEC-Q101 汽车级标准鉴定的 80 V GaN FET,电流脉冲可达 75 A(图 3)。EPC2252 的最大导通电阻 (RDS(on)) 为 11 mΩ,最大总栅极电荷 (Qg) 为 4.3 nC,漏极恢复电荷 (QRR) 为零。

IC 以裸片尺寸球栅阵列 (DSBGA) 的形式提供。这意味着钝化后的裸片直接固定到焊球上,无需进行任何其他形式的封装。因此,DSBGA 芯片与硅裸片尺寸相同,最大限度地降低了外形尺寸。在本例中,EPC2252 采用尺寸为 1.5 x 1.5 mm 的 9-DSBGA 封装。该产品从结点到电路板的热阻为 8.3 °C/W,因此适用于高密度系统。


适用于自主驾驶车辆LiDAR的GaN FET快速指南图 3:EPC2252 GaN FET 通过了 AEC-Q101 认证,适用于驱动汽车 LiDAR 系统中的激光二极管。(图片来源:EPC)


设计人员可以使用 EPC 的 EPC9179 开发板,通过在总脉冲宽度为 2 至 3 ns 的 LiDAR 系统中部署 EPC2252 来实现快速启动(图 4)。EPC9179 包括一个来自 Texas Instruments 的 LMG1020 栅极驱动器,可由外部信号或板载窄脉冲发生器(拥有亚纳秒级精度)控制。


适用于自主驾驶车辆LiDAR的GaN FET快速指南图 4:图示为 EPC9179 演示板,其中包含 EPC2252 GaN FET 和其他关键元器件。(图片来源:EPC)


开发板配备由 5 x 5 mm 分离式内插器组成的 EPC9989 内插器板(图 5)。这些器件与许多常见的表面贴装激光二极管(如 SMD 和 MMCX)的安装基底面以及为适应射频连接器和各种其他负载而设计的模式相对应。


适用于自主驾驶车辆LiDAR的GaN FET快速指南图 5:EPC9989 内插器板由多个内插器组成,例如 SMD 激光内插器(右上角),该器件可掰断,以与 EPC9179 演示板配合使用。(图片来源:EPC)


Excelitas Technologies 的 TPGAD1S09H 脉冲激光器(图 6)的发射波长为 905 nm,可与 EPC9989 插接器板配合使用。该激光二极管采用安装在无引线层压载体上的多层单片式芯片,具有出色的热性能,波长温度系数 (Δλ/ΔT) 为 0.25 nm/°C。这种量子阱激光器的上升和下降时间均小于 1 ns,并配有适当的驱动器。TPGAD1S09H 可用于表面贴装应用和混合集成。该器件可以平行或垂直于安装平面发光,并且环氧树脂封装成本低,适合量产。

适用于自主驾驶车辆LiDAR的GaN FET快速指南图 6:TPGAD1S09H 脉冲激光器能产生极高峰值脉冲,并可平行或垂直于安装平面发光。(图片来源:Excelitas)


ams OSRAM 的 SPL S1L90A_3 A01(图 7)是另一个激光二极管的示例,该器件可与 EPC9989 内插器板配合使用。这款单通道 908 nm 激光模块可提供 1 至 100 ns 脉冲,峰值输出功率为 120 W。其工作温度范围为 -40 至 +105 °C,占空比为 0.2%,采用紧凑型 QFN 封装,尺寸为 2.0 x 2.3 x 0.69 mm。


适用于自主驾驶车辆LiDAR的GaN FET快速指南图 7:SPL S1L90A_3 A01 激光二极管能产生 1 至 100 ns 脉冲,可与 EPC9989 内插器板配合使用。(图片来源:ams OSRAM)


对于需要极窄脉冲宽度的 LiDAR 系统,设计人员可以采用 Texas Instruments 的 LMG1025-Q1 单通道低压侧栅极驱动器,该器件具有 1.25 ns 的输出脉冲宽度,可让高强度 LiDAR 系统符合 IEC 60825-1 1 类安全要求。其脉冲宽度窄,开关速度快,脉宽失真度为 300 ps,能够在远距离上进行精确的 LiDAR ToF 测量。

2.9 ns 的传播延迟缩短了控制回路的响应时间,2 x 2 mm 的 QFN 封装最大限度地减少了寄生电感,从而支持高频 LiDAR 驱动电路中的大电流、低瞬时振荡开关。LMG1025-Q1EVM 是 LMG1025-Q1 的评估模块,该器件有一个位置,可容纳代表典型激光二极管的电阻负载,或用于在使用电阻负载进行驱动脉冲调谐后安装激光二极管(图 8)。


适用于自主驾驶车辆LiDAR的GaN FET快速指南

图 8:LMG1025-Q1EVM 演示板可容纳代表典型激光二极管的电阻负载,用于初始设置。

(图片来源:Texas Instruments)


总结

设计人员面临的挑战日益严峻,所开发的汽车 LiDAR 系统不仅要提供具有厘米级分辨率的实时 ToF 测量,还要符合 IEC 60825-1 1 类安全要求。如前所述,GaN FET 可与各种激光二极管配合使用,产生高性能汽车 LiDAR 所需的纳秒级脉冲宽度和高峰值功率。

(作者:Kenton Williston)

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    美国大学研发新软件 利用逼真环境安全地研发/测试自动驾驶车;据外媒报道,美国俄亥俄州立大学(The Ohio State University)的研究人员研发了一款新软件,以帮助研发、评估和演示更安全的自动驾驶或无人驾驶......
    详解设计无人驾驶汽车全自动系统的五大挑战;无人驾驶汽车——这一概念在过去的八到十年里大肆宣传。尽管早在五十年前,人们就已经在这个问题上做了很多研究,但关于如何让汽车自己学习,然后能够自己驾驶......
    得到了快节奏的发展。 事实上,低速无人驾驶的技术使用已经相当普遍。在其产品上,涉及了很多的自动驾驶技术,比如每辆低速自动驾驶车辆上都融合了硬件、软件、算法和通信等多种技术,如自动驾驶所需的激光雷达、毫米波雷达、卫星定位、惯导......
    没人会反对。伴随着无人车问世,不少原先围绕车子的相关事情也会跟改变,包括总共 1,600 亿美元规模的汽车保险,必须因应无人车普及改变原先的保费计算方式才行。 这几年以来,各科技厂和车厂,纷纷投入资源发展无人驾驶......
    萝卜快跑,凭什么技术砸了司机的饭碗?;这两天,RoboTaxi(无人驾驶出租车)开启了神仙打架模式:一面是“萝卜快跑”在武汉爆火,另一面特斯拉继续跳票,将计划中的RoboTaxi发布会从8月推......
    老司机驾车技术解析:为什么自动驾驶不是无人驾驶?;  最近,身边许多不明真相但是却比较土豪的朋友都在问我一个类似的问题,那就是在买车的时候,总是看到一些类似于辅助驾驶、自动驾驶一类的概念。如果......
    手机的导航软件就可以看到当前的红绿灯的状态和倒计时的情况。“这样我们开车的时候就更加从容了,比如说前面有车遮挡的时候,也不再担心被挡到了看不到红绿灯,而且也知道下一个灯是什么时候到来,这样开车习惯就会更好了。”孔磊表示。 无人驾驶......
    的Uber的撞人事故中为什么传感器没能检测到行人?无人驾驶汽车又是怎么样的一个技术解决方案呢?我们来了解一下。 无人驾驶技术 无人驾驶汽车是一种智能汽车,也可以称之为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶......
    车型,其中前者可以支持高速高架NOA。 当前,NOA被认为是提高用户辅助驾驶使用率的关键必经之路,2023年也已被众研究机构定义为“城市NOA元年”,一众车企和自动驾驶企业纷纷加入到城市NOA大战中。今年4......
    商业化试点政策,使用萝卜快跑就可以线上打到全无人的自动驾驶汽车。该项政策落地,标志着重庆、武汉两地居民将在全国首先享受到全无人驾驶出行服务,中国自动驾驶也会迎来高速增长拐点,在全球竞赛中占据领先位置。 位于......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>