基于机器视觉的缺陷检测的原理与方法

发布时间:2024-08-16  

基于统计分类的方法: (1)基于KNN方法(最近邻法):利用相似度,找出k个训练样本,然后打分,按得分值排序。 (2)基于Naive Bayes算法:计算概率,构建分类模型。


引导:

医生对病人进行诊断就是一个典型的分类过程,任何一个医生都无法直接看到病人的病情,只能观察病人表现出的症状和各种化验检测数据来推断病情,这时医生就好比一个分类器,而这个医生诊断的准确率,与他当初受到的教育方式(构造方法)、病人的症状是否突出(待分类数据的特性)以及医生的经验多少(训练样本数量)都有密切关系。

一、KNN分类器 1.1.1最近邻算法

定义:计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据。

缺陷:对噪声数据过于敏感。

措施:将被决策样本周边的多个最近样本计算在内,扩大参与决策的样本量,以避免个别数据直接决定决策结果。

1.1.2K-最近邻算法(KNN)

基本思路:选择未知样本一定范围内的K个样本,该K个样本中某一类型出现的次数最大,则未知样本判定为该类型。

举例说明: 如果K=3,绿色圆点的最近的3个邻居是2个红色小三角形和1个蓝色小正方形,少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于红色的三角形一类。如果K=5,绿色圆点的最近的5个邻居是2个红色三角形和3个蓝色的正方形,还是少数从属于多数,基于统计的方法,判定绿色的这个待分类点属于蓝色的正方形一类。

9ebd898e-1932-11ee-962d-dac502259ad0.png

算法执行步骤:

(1)输入测试集。 (2)设定参数k。 (3)遍历测试集,对于测试集中每个样本,计算该样本(测试集中)到训练集中每个样本的距离;取出训练集中到该样本(测试集中)的距离最小的k个样本的类别标签;对类别标签进行计数,类别标签次数最多的就是该样本(测试集中)的类别标签。 (4)遍历完毕,输出测试集的类别。

1.1.3 知识补充 距离度量表示的是两样本之间的相似程度。 常用距离度量方式:

9ed9bc12-1932-11ee-962d-dac502259ad0.png

二、朴素贝叶斯分类器

2.1贝叶斯公式 贝叶斯公式理解 https://www.zhihu.com/question/19725590/answer/241988854 (怎样用非数学语言讲解贝叶斯定理(Bayes’s theorem)?) 2.2朴素贝叶斯分类器 2.2.1基本思想 对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

9ef81d60-1932-11ee-962d-dac502259ad0.png

2.2.2朴素贝叶斯“公式”

9f101cf8-1932-11ee-962d-dac502259ad0.png

9f2b627e-1932-11ee-962d-dac502259ad0.png

2.2.3朴素贝叶斯分类器

9f4deb32-1932-11ee-962d-dac502259ad0.png

三、瑕疵缺陷检测

检测方法: (1)瑕疵缺陷图像特征的选择与提取。 (2)计算缺陷图像与标准图像关于灰度的差值。 (3)通过差值与设定阈值比较判断是否存在缺陷。 3.1缺陷图像差分法 3.1.1基本原理

9f623a4c-1932-11ee-962d-dac502259ad0.png

3.1.2基本流程 (1)有效检测区域的设定 (2)图像配准与剪裁 (3)设定差分阈值 (4)缺陷位置的判别 3.2缺陷图像特征的选择与提取 详见:https://zhuanlan.zhihu.com/p/43488853 3.2.1特征提取方法 (1)灰度值特征 (2)灰度差特征 (3)直方图特征 (4)变换系数特征 (5)线条和角点的特征 (5)灰度边缘特征 (6)纹理特征

3.2.2特征选择(数据降维) 降维的原因:在机器学习中,如果特征值即维度过多,会引发维度灾难。维度灾难最直接的后果就是过拟合现象,进而导致分类识别的错误,因此我们需要对所提的特征进行降维处理。 基本原理:特征选择是将原始空间进行变换,重新生成一个维数更小各维之间更独立的特征空间。 降维面临的问题:

(1)降维后数据应该包含更多的信息?

(2)降维后会损失多少信息?

(3)降维后对分类识别效果有多大影响?

数据降维后的好处:

(1)进行数据压缩,减少数据存储所需空间以及计算所需时间。

(2)消除数据间的冗余,以简化数据,提高计算效率。

(3)去除噪声,提高模型性能。

(4)改善数据的可理解性,提高学习算法的精度。

(5)将数据维度减少到2维或者3维,进行可视化。 常用方法:主成分分析,随机映射,非负矩阵分解。

3.2.3主成分分析(PCA) 方法概述:此方法目标是找到数据中最主要的元素和结构,去除噪音冗余,将原有的复杂数据降维,揭露出隐藏在复杂数据背后的简单结构。主成分分析就是试图在力保数据信息丢失最少的原则下,对这种多变量的数据表进行最佳综合简化。这些综合指标就称为主成分,也就是说,对高维变量空间进行降维处理,很显然,识辨系统在一个低维空间要比在一个高维空间容易得多。从线性代数角度来看,PCA目标是找到一组新正交基去重新描述得到的数据空间,这个维度就是主元。

3.3灰度形态学的缺陷检测 3.3.1概述 灰度数学形态学的基本运算有膨胀、腐独、开启和关闭,其中利用膨胀和腐蚀的组合可构成开启和关闭,而利用开启和关闭又可构成形态滤波器。 在灰度图像的形态分析中,结构元素可以是何的三维结构,常用的有圆锥、圆柱、半球或抛物线。模板尺寸总是奇数,这样檬板中心正好对应一个像素。

3.3.2 形态操作对图像影响

(1)膨胀灰度图像的结果是,比背景亮的部分得到扩张,而比背景暗的部分受到收缩。

(2)腐蚀灰度图像的结果是,比背景暗的部分得到扩张,而比背景亮的部分受到收缩。

(3)开启一幅图像可消除图中的孤岛或尖峰等过亮的点。

(4)关闭一幅图可将比背景暗且尺寸比结构元素小的结构除掉。

(5)形态滤波器是非线性信号滤波器,它通过变换来局部地修改信号的几何特征。将开运算和闭运算结合起来可消除噪声。

(6)如果用一个小的结构元素先开启再闭合一幅图像,就有可能将图像中小于结构元素的类似噪声结构除去。

3.3.3实例说明 电路板布线的缺陷检测:对于一幅大小为1100×870、灰度级为256的电路板灰度图像,其布线缺陷分为断线和毛刺,利用灰度形态学检测这些缺陷。取结构元素为5×5的半球模板,首先对原图灰度开启,消除比邻域亮且尺寸比结构元素小的区域;然后对原图灰度闭合,消除比邻域暗且尺寸比结构元素小的区域,两次结果差异即为缺陷。

9f817650-1932-11ee-962d-dac502259ad0.png

四、划痕检查

概述:划痕检测的基本分析过程分为两步首张,确定检测产品表面是否有划痕,其次,在确定被分析图像上存在划痕之后,对划痕进行提取。由于在工业检测中图像的多样性,对于每一种圈像,都要经过分析综合考虑各种手段来进行处理达到效果。一般来说,划痕部分的灰度值和周围正常部分相比要暗,也就是划痕部分灰度值偏小,而且大多都是在光滑表面,所以整幅图的灰度变化总体来说非常均匀,缺乏纹理特征。

基本方法:基于统计的灰度特征或者阈值分割的方法将划痕部分标出。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    机器视觉系统组成 3D相机与2D相机的区别;无论2D相机还是3D相机,提到相机不可避免地涉及到机器视觉机器视觉与计算机视觉并没有一个明显的定义去划分。但在实际应用中,应用于工业检测的时候更多地被称为机器视觉而非计算机视觉......
    输出单元等。 1、影响机器视觉检测设备精度的因素 视觉检测设备不稳定因素:工业相机工业相机的挑选关键考虑到其传感器类型、像素和帧数,在其中控制器分CCD与CMOS二种,CMOS光学镜头处理速度高,各元器件、电源......
    点云数据采集和三维数据在线测量,已大批量应用于高精度、高速、在线3D定位、测量、缺陷检测场景。 客户需求是希望通过接口的适配性,能够完美地匹配他们的3D相机接口,实现整套硬件系统的接入。 最后我们给客户推荐使用了英德斯的机器视觉......
    浅谈机器视觉检测技术和机器视觉定位技术;机器视觉检测与机器视觉定位是两种重要的机器视觉应用技术,主要区别在于检测对象和应用领域不同。机器视觉检测技术可以用于检测产品的外观、尺寸、密封性、移动......
    广泛的话,就会有产品的表面缺陷检测机器视觉检测设备系统附件是由哪些部分组成的? 机器视觉检测设备系统附件组件: 1、工业相机: CMOS相机、CCD彩色相机、面阵相机、CAMERA-LINK相机......
    疫情大流行凸显了疫苗质量作为一个全球卫生问题的重要性。 在制药行业,机器视觉检测的典型应用与其他行业大抵相同,但每一项特定任务都需要制定更加严格的标准和规范。因此,作为质控的一环,制造商必须确保生产的每一个步骤,从产......
    预计至2027年我国机器视觉市场规模将达到565亿元; 【导读】消费电子、半导体、智能汽车行业的发展在刺激机器视觉检测技术升级的同时,也给行业带来新的需求增量。据高工机器......
    成B轮2亿美元融资;梅卡曼德是以AI+3D视觉为核心的工业机器人智能化解决方案提供商,已完成了累计超过15亿元的融资;心鉴智控作为工业视觉检测核心技术服务商,连续完成两轮近亿元融资;华睿科技聚焦在机器视觉和移动机器......
    系统使用的光波段:根据探测对象不同的物理介质、材料和状态可以从可见光、红外、X射线、微波、超声到γ射线。 观测对象:静止的、运动的、平面的、立体高清 机器枧觉的工作原理 机器视觉检测系统采用CCD照相机将被检测......
    机器视觉检测设备影响测量精度的因素分析;近些年 机器视觉 系统应用已经的非常广泛,机器视觉系统的高精度、高检测效率、降低生产成本,深受企业青睐。再好的东西也会出现问题,机器视觉系统在使用过程中,由于......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>