KWIK电路常见问题解答 放大具有大直流偏移的交流信号以用于低功耗设计

发布时间:2023-09-22  

简介


此KWIK(Know-how With Integrated Knowledge——技术诀窍与综合知识)电路应用笔记提供了应对特定设计挑战的分步指南。本文将讨论与特定应用相关的要求,如何利用通用公式进行转换,以及如何轻松地将其扩展到其他相关的应用规格。


在电磁流量计或生物电测量等应用中,小差分信号与大得多的差分偏移串联。这些偏移通常会限制您在前端可以获取的增益,降低整体动态范围,尤其是在使用电池供电的较低电源电压的信号链上。


本指南将帮助您设计一个低功耗、交流耦合信号调理电路,该电路既能抑制大偏移电压,又能放大小的差分信号。此外,本指南将有助于围绕高通滤波器的增益级的划分以及噪声考虑因素。


设计规格示例

图1所示电路的设计选择在很大程度上取决于输入信号和偏移的幅度范围及频率,还有电源电压以避免饱和。功耗和尺寸对电池供电应用也很关键。示例设计规格如表1所示。


 image.png

图1.电池供电的交流耦合信号调理电路


表1.图1所示电路的主要设计规格

image.png


设计描述


image.pngimage.png


设计步骤


1.设置Vbias:

为使电源电流贡献小于1uA,设置R1 = R2 = 10MΩ。


 image.png


ADA4505之前的电阻分压器的输出:


 image.png


使用容差小于1%的R1和R2,将使Vbias变化保持较低水平,有助于最大程度地提高第一和第二增益级的输出摆幅。结合1%电阻和ADA4505缓冲器的Vos:


 image.png


为了消除电阻的交流电源干扰和噪声,设置C1使得截止频率至少小于Vsignal最低频率0.5Hz。在这种情况下,C1设置为0.1uF:


 image.png


2.设置第一级增益


首先,考虑AD8235输出摆幅范围对供电轨的限制。对于给定电源电压,这些值可以从数据手册的“高输出电压”和“低输出电压”部分找到。这种情况下没有阻性负载,保守起见,我们使用100kΩ摆幅的最差情况:


 image.png


由于输入是全差分式,因此就Vbias而言,这将是最差情况输出摆幅。


对于正输入信号(Vbias_max=1.67V):


 image.png


对于负输入信号(Vbias_min=1.63V):


 image.png


现在为了设置增益,计算总预期差分输入信号,并使用正负摆幅范围的下限来设置最大摆幅范围:


 image.png


没有外部Rg电阻时,AD8235的最小增益为5,因此我们使用此值,从而为直流误差和其他情况留一些裕量。另外,必须检查选定增益情况下的“钻石图”。有关此操作,请参见设计仿真部分。


3.设置高通滤波器


假设Rfilt和Cfilt的元件容差为±10%,最快时间常数应小于Vsignal最低频率:


 image.png


如果选择Rfilt=100kΩ并重新整理方程:


 image.png


采用最接近的标准电容值,设置Cfilt = 4.7uF,那么更新后的标称截止频率为:


 image.png


如果设计规格需要对最小信号频率进行某种最低衰减,则很容易检查给定滤波器的截止频率。请参见此电路的示例:


 image.png


现在为了设置增益,计算ADA4505输入端的总预期差分输入信号,并使用正负摆幅范围的下限来设置最大摆幅范围:


 image.png


我们采用大约25倍的增益,以为直流误差和其他元件容差留一些裕量,并选择R4 = 1MΩ,以在最大信号摆幅时保持较低电源电流。


 image.png


将R3四舍五入到下一典型电阻值,得到43kΩ。


 image.png


4.设置第二级增益


使用类似于第一级增益的方法,首先根据数据手册确定ADA4505输出摆幅范围限值。阻性负载未知,保守起见,我们将使用10kΩ最差情况:


 image.png


由于输入是全差分式,因此就Vbias而言,这将是最差情况输出摆幅。


对于正输入信号(Vbias_max=1.67V):


 image.png


对于负输入信号(Vbias_min=1.63V):


 image.png


5.利用Cfilt2设置低通滤波器

首先使用增益带宽积(GBP)确定ADA4505在24.26倍增益下的带宽:


 image.png


如果目标带宽因为预期最大信号频率而需要进一步降低,以及/或者需要限制宽带噪声,那么可以使用电容Cfilt2。假设R4和Cfilt2的元件容差为+/-10%,最慢时间常数应大于Vsignal最大频率


 image.png


使用1MΩ的R5,重新整理方程:


 image.png


然后可以将其四舍五入到最接近的标准电容值3.3nF,因此更新后的截止频率为:


 image.png


如果设计规格需要对最大信号频率进行某种最低衰减,则很容易检查给定滤波器的截止频率。


请参见此电路的示例:


 image.png


设计仿真


为了检查仪表放大器的共模输入范围与输出电压的关系或“钻石图”,您需要提供电源电压+Vs、基准电压、增益、共模摆幅和差分输入摆幅。ADI公司的仪表放大器钻石图工具可帮助了解输入摆幅是否在器件的工作范围以内。请注意,该工具使用的输出摆幅使用最差情况的负载条件(最小阻性负载)。因此,如果按照该工具的限值进行设计,则对于较大阻性负载,系统将会有更多裕量。


查看图2中的结果,绿色轮廓是在给定电源电压、输出摆幅、输入共模范围和器件基准电压下AD8235的可用范围。红色轮廓显示了对于给定的共模和差分输入模式摆幅,您使用了多少可用范围。目标是让红色轮廓保持在绿色轮廓以内。如果某些条件违反了此要求,工具将显示错误并提供建议。为了进一步了解仪表放大器内部发生的事情,“Internal Circuitry”(内部电路)选项卡会显示内部节点的电压。


LTspice是一款出色的仿真工具,可用来检查上文进行的设计过程计算,包括其他有意义的规格,例如目标信号频带的噪声性能。LTspice原理图如下图3所示。第一个仿真是瞬态仿真,直流偏移为300mV,输入信号为±10mV (5Hz)。图4显示了电路中各级的信号。绿色曲线是总差分输入信号。红色曲线是AD8235输出端的放大后信号。蓝绿色曲线显示了移除直流偏移后的高通滤波器输出,最后的蓝色曲线显示了最终的放大后5Hz信号。


 image.png

图2.AD8235钻石图工具示例


 image.png

图3.LTSPICE原理图


 image.png

图4.在电路不同级进行的瞬态仿真,Voffset=300mV,Vsignal=±10mV


图5使用严苛的2Vp-p 60Hz Vcm输入信号(绿色),而未施加任何差分信号。在电池供电的应用中,60Hz信号达到如此高的电平是不太可能的,但这是需要考虑的事情。请注意,图中的所有信号都位于Vbias = 1.65V的直流电压。大部分衰减来自AD8235的CMRR,其在60Hz时大于60dB(红色和蓝绿色曲线~7.5mVp-p)。最终输出(蓝色曲线~110mVp-pk)经放大后,由48Hz低通滤波器部分衰减。


图6显示了如果共模和差模输入同时存在,信号将是什么样子。可以看到,60Hz信号作为纹波出现在已被放大的较慢5Hz信号之上。图7显示,对于图4中的仿真设置,来自+Vs的电源电流小于52uA。


 image.png

图5.在电路不同级进行的瞬态仿真,Vcm=1.65V±1V


 image.png

图6.在电路不同级进行的瞬态仿真,Voffset=300mV,Vsignal=±10mV,Vcm=1.65V±1V


图8中的另一个仿真显示了图3中电路的频率响应。峰值幅度是在5Hz频率确定的,光标1和2分别放置在高通和低通滤波器的-3dB点。下表显示了计算结果与测量结果的比较。


表2 - 计算结果与仿真结果

image.png


在频率响应中,值得一提的是对于此电路中使用的低通滤波器,当Cfilt2短路时,第二级的增益降至1。这意味着,来自AD8235和高通滤波器的信号在达到AD8235的带宽之前不会继续衰减。为了进一步滤波,可以将一个低通滤波器放在第二增益级的输出端,就像通常在ADC之前所做的那样。


图9中的另一个仿真显示了图3中电路的电压噪声密度与频率的关系(折合到输入)。做法是将输出噪声除以解决方案的总增益(121.3)。使用有效值噪声计算器来计算从0.5Hz到40Hz(即目标Vsignal频率范围)的积分噪声。要使用此计算器,首先右键单击图形的x轴以设置目标频率范围,然后按住Ctrl键并左键单击波形名称(V(onoise)/121.3)。使用下式可轻松将有效值噪声转换为峰峰值噪声:


 image.png


快速检查AD8235噪声,确定这是主要的噪声源。这是有道理的,因为电路中的所有其他噪声源都是在第一级增益之后,折合到输入端的总噪声贡献得以减少。


 image.png

图7.总电源电流的瞬态仿真,Voffset=300mV,Vsignal=±10mV


 image.png

图8.图3中电路的频率响应


 image.png

图9.图3中电路的电压噪声密度与频率的关系(折合到输入)


设计器件


image.png

参考资料


仪表放大器钻石图工具


钻石图工具是一个网络应用程序,可生成特定配置的输出电压范围与输入共模电压关系图,也被称为钻石图,适用于ADI仪表放大器。


LTspice

LTspice®是一款高性能SPICE III仿真软件、原理图采集工具和波形查看器,集成增强功能和模型,简化了开关稳压器、线性稳压器和信号链电路的仿真。


附录


图10显示了LTSPICE原理图,其中比较了在输入端交流耦合的构想与在AD8235输出端交流耦合的做法。使用了相同的滤波器截止频率,但对于输入滤波器使用最差情况5%容差不匹配。共模与频率的关系图(折合到输入)如图10所示,其中比较了图1中电路(Vout1,绿色曲线)与前方的交流耦合(Vout2,蓝色曲线)。该结果未考虑传感器的任何其他不平衡(例如电极),也未考虑电容的ESL和ESR。


 image.png

图10.交流耦合电路的比较(AD8235之前和之后)


 image.png

图11.图10所示电路的CMRR与频率关系图的比较


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    路增益开始衰减的高频端,使ROOL能够接近RΘ。图2所示电压增益由下式给出:误差项由下式给出:图2输出阻抗由下式给出:给出运算放大器有限开环增益导致的误差。注意,图2电路输入与输出信号反相。假设理想运算放大器......
    运算放大器的输出电阻Ro和负载电阻RL分压输出。 此时,当Ro远远小于RL(Ro=0)时,第2项可近似于1,信号可在不衰减的状态下输出。 这样的运算放大器被称为理想运算放大器。 一般希望运算放大器具有高输入电阻......
    端差值。 5输入电压范围 该参数指运算放大器正常工作(可获得预期结果)时,所允许的输入电压的范围,VIN通常定义在指定的电源电压下。 6输出电......
    常数 ( τ )确定的速率充电,负反馈迫使运算放大器产生输出电压,在运算放大器的反相输入端保持虚拟接地。 积分放大电路 由于电容连接在运算放大器的反相输入(处于......
    , 其输出电压和输入电压同相。反馈是通过一个电阻从运算放大器的输出获取到运算放大器的反相输入,另一个电阻接地。 这两个电阻决定了反馈电压,从而控制了运算放大器......
    非 线性失真 、抑制 反馈环内噪声 、扩展 频带 、改变输入电阻和输出电阻......
    低精度和显著的温度漂移之外,大多数分立差动运算放大器电路的CMR也较差,并且输入电压范围小于电源电压。此外,单片仪表放大器会有增益漂移,因为前置放大器的内部电阻网络与接入RG引脚的外部增 益设置电阻......
    流是相对稳定的。 总结 运算放大器是多功能组件,通常可以在不需要复杂模拟或通过长途跋涉的查阅数据手册即可实现。然而,有时运算放大器的非理想行为会显著影响性能。因此,我们需要在设计过程中研究和解决这些问题。我希望本系列能够帮助您了解一些管理运算放大器输入和输出信号的要点。 ......
    的必要条件是运放引入深度负反馈。 【虚断】 虚断指在理想情况下,流入集成运算放大器输入端电流为零。这是由于理想运算放大器的输入电阻无限大,就好像运放两个输入端之间开路。但事实上并没有开路,称为“虚断”。 话不......
    。 后果: 第一,当用放大器接成跨阻放大测量外部微小电流时,过大的输入偏置电流会分掉被测电流,使测量失准。第二,当放大器输入端通过一个电阻接地时,这个电流将在电阻上产生不期望的输入电......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>