符合功能安全ASIL-D的汽车牵引逆变器设计

发布时间:2023-09-28  

1

安全目标及开发流程

功能安全的目标是将风险最小化到可接受的水平,风险定义为:发生损害的概率和该损害对人员的影响(以及在较小程度上对设备和环境的影响);  

常用降低风险的措施分为故障避免、故障检测和故障处理措施;  

ISO26262中阐述的V模型,非常经典;

对于功能安全的开发,从概念阶段的项目定义开始,经过危害分析及影响,形成技术安全需求,再到具体的软硬件开发,验证及生产及生产后的管理;  

全流程主要分概念阶段,开发阶段,量产阶段,如下:  

7a09935e-f5cd-11ed-90ce-dac502259ad0.png

这里说明一下,Item Definition,则是我们具体设计/分析的产品的系统或子系统,它是我们进行安全设计的对象,或载体,比如本文重点描述的电机牵引逆变器;

2

概念阶段的核心思想和关键词

确认目标对象后,分析其功能需求,子系统及和外部系统的交互

7a302316-f5cd-11ed-90ce-dac502259ad0.png

牵引逆变器接收来自整车控制器(VCU)的命令,完成电机状态的控制;

明确对象的危险分析及风险评估(HARA:Hazards Analysis and Risk Assesment),提出安全目标(SG:Safety Goal),这里的SG的衡量标准就是大家常听到ASIL-A/B/C/D,比如

非驾驶员意图的加速、刹车;在低速/高速,城市/高速等不同状态下可能导致的伤害是轻微碰撞/验证碰撞

安全目标:保证输出的加速扭矩不超过给定量的5%,最大不超过50 Nm;

由Safty Goal,抽象细化出功能安全需求(FSR,Functional Safety Requirements),比如

FSR1:获取当前电机转速,对转速获取全链路进行监测,及对比校验;

FSR2: 当识别到的输出扭矩超过给定扭矩5%,在1us内将三相桥臂开关切换至安全状态

基于功能安全需求进行拆分,得出软硬件的技术安全需求(TSR,Technical Safety Requirements)  

3

牵引逆变器的考虑

牵引逆变器在新能源汽车中的主要作用,是基于整车控制器(VCU)给出的扭矩指令,控制电机的运行:

加速电机;

制动电机,回馈能量;

对于电池供电的电动车,电机通用通过一个8:1或10:1的变速箱连接到车轮;    

因此,主要的危害有:非预期的过度牵引,非预期的制动,以及高压电击;

这些危害被整车厂识别,并标识以ASIL-B,ASIL-D不同的安全级别(ASIL,Automotive Safety Integrity Level)

因此,在本文的分析中,安全目标(Safty Goal)考虑如下:

SG1:避免加速扭矩超过50Nm,或超过+5%的预期控制扭矩(ASIL-D,FTTI=200ms)

SG2:避免制动扭矩超过50Nm,或超过+5%的预期制动扭矩

牵引逆变器的典型控制流程如下

VCU通过CAN总线,向处理单元发送扭矩控制指令

处理单元收到扭矩控制指令

处理单元基于当前的电机运行状态(通过传感器获取),以及收到的控制指令,计算出需要输出的PWM占空比;

驱动电路基于PWM占空比驱动桥臂开关

处理器测量系统的状态,包括电流,电机轴位置,电机转速,电压等,完成闭环控制

下面,将基于ISO26262的理论和要求,介绍安全目标,功能需求,技术需求,硬件需求,软件需求

4

执行-检查的处理架构

在处理器域,导致违反SG1和SG2安全目标的主要的失效机制,可以总结为:

通信的失效,或者计算的失效;本文不讨论通信的失效,这类失效一般通过对CAN通信消息的数据完整性校验来实现;

7a4a4bba-f5cd-11ed-90ce-dac502259ad0.png

上图中执行-检查架构,用于预防处理器的计算失效;

架构中,执行单元实现了主要电机控制需要功能,包括FOC控制算法,电机控制算法,数学计算库等;

检查单元负责检查非安全状况并保证系统运行在安全状态;

架构中,执行单元聚焦在功能及性能,检查单元聚焦实现安全目标;在ISO26262的定义里意味着,执行单元只需要符合QM(Quality Managed)标准,而检查单元需要符合ASIL-D的标准;

在本文研究中,我们将检查单元的功能以及需求,提炼并在名叫安全管理(Safety Manager)的系统单元中;

7a834b68-f5cd-11ed-90ce-dac502259ad0.png

如上图,结合NXP公司的MPC5775E微控制器,以及FS65功能安全SBC(System Basic Chip),可以轻松的实现执行-检查的安全架构;

我们将执行器的工作分配给Core 0(Non-LockStep),将安全管理的工作分配给CPU1(LockStep);

常见的两个内核的失效,通过MPC5775E内部的安全机制检查,或者通过外部的安全SBC FS65检查,这些机制可以包括故障收集及控制单元,时钟监控单元,电源管理单元,内存保护单元,这些单元可以运行在FS SBC上;安全单元的失效,需要再通过监控FS65实现,并在识别出故障或失效时候,控制系统进入安全状态(通过直接配置电机控制接口);

逆变器的安全运行状态的机制,可以通过灵活的,模块化的方式,在NXP的安全概念指引下实现;

5

永磁同步电机控制接口的安全概念

针对电动汽车的一个限制,是永磁同步电机电机运行产生的高反电动势;在高速运行情况下,如果永磁同步电机的相绕组处于断开状态,如下图所示

7aa65d06-f5cd-11ed-90ce-dac502259ad0.png

那么将可能导致高于电池电压的反电动势,这将引起可再生的电流,以及非预期的制动扭矩;为了防止这个危害,系统需要短路桥臂所有的高边开关,或者所有的低边开关

7ac2925a-f5cd-11ed-90ce-dac502259ad0.png

7ae4b3da-f5cd-11ed-90ce-dac502259ad0.png

上述的应用安全需求,可以通过如下架构实现

7af67476-f5cd-11ed-90ce-dac502259ad0.png

一套独立的,用于控制高边以及低边开关的控制电路

如果单点故障,可能导致高边或低边不可控制,系统将无法正常运行;

快速的短路保护电路(上图A)

短路电路,可能永久性损害开关桥,并导致系统进入非安全状态;因为短路失效需要在非常短的时间内处理,MCU无法满足,因此需要通过门驱动电路GD3100来实现;

上层应用的诊断以及安全的应对措施(上图B)

电机控制接口的失效,可能的原因很多:电机相绕组,IGBT开关,门驱动,分立的芯片,冷却系统,针对不同的原因,需要不同的应对措施;高边的失效保护需要快速将三相绕组短路到电池,而低边的开路保护则是短路到地GND;GD3100门驱动电路是基于ASIL-D级别进行开发的,因此其内部有丰富的自诊断机制,能够检查出99%的内部故障,并可以通过冗余的通信机制通知到MCU的安全管理单元

反应通道(上图C)

当MCU接收到故障上报,内部的安全管理逻辑可以决策出最合适的安全状态;并通过GD3100专门的IO引脚进行控制;整个决策和响应需要在~100us的FTTI内;

NXP的GD3100门驱动是上述架构的重要组成,主要的差异特性有:

直接控制IGBT/SiC开关管;在降低整体失效率的同时,提供了一条独立的电机控制路径

快速的短路保护特性,对IGBT的保护时间<2us,对SiC则更快;

高诊断覆盖率:GD3100基于ISO26262进行设计,针对内部故障,内部自检测试以及CRC校验有高覆盖率;

6

通信以及传感器的安全概念

为了实现闭环,电机控制算法需要采样电流,电机的转子角度以及电池的电压;如果如上的传感器信息采集有错误,将直接影响输出给电机的指令;因此,对于传感器的安全需求,是针对传感器传输全链路的故障诊断,包括传感器,放大调理单元,模拟数字转换,以及传感器数据的预处理等;

本文,我们以电机位置传感器为例阐述;方法论和电流以及电压采样的类似;

7b3bc2c4-f5cd-11ed-90ce-dac502259ad0.png

系统采用固定在转轴上的旋转变压器,放大调理电路,以及解码模块(eTPU);eTPU是基于处理器及定时器完成的位置解码算法模块;这个架构的优势在于避免浪费CPU0的算力;

转速反馈的全流程说明:

eTPU产生旋转变压器的激励信号

物理相位相差90°C的两个绕组,感应出SIN/COS两路信号;

Sigma Delta ADCs采样两路经过调理放大后的信号,并与激励信号完成同步;处理完成的结果,存储在eTPU的RAM中;

信号基于观测器模型进行处理,解调后得到角度及速度信息;

计算得到的角度传递给电机控制算法

位于安全内核CPU1的RDC检测器,针对上述的信号链路进行监测及诊断;

输入监控的单元检查原始数据,并通过过零检测计算与激励信号的同步,信号的最大和最小幅度,单位向量;

整个检测功能可以识别出99%由于调理,绕组,激烈链路,Sigma Delta ADC可能存在的硬件失效;

其中

ATO检测功能,采用和eTPU不同的角度计算方法,并运行合理性检测程序;它可以检测eTPU的故障;

外推检测单元(extrapolation tracker)检查角度外推法可能存在的失效;


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    系统简介   新能源汽车结构主要是由电驱动系统、底盘部分、车身构架以及各种相关辅助装置等部分组成。除电力驱动系统部分外,其余部分的功能和结构组成大体与传统汽车类同,但有些部件因所选驱动方式的不同,被简......
    发展方向。 电驱动桥的耐久试验 1.电动机直联式电驱动桥的耐久试验 电动机直联式电驱动桥是从传统燃油驱动桥衍变而来,因而可参考QC/T 533-2020《汽车驱动桥台架试验方法》、QC......
    、电动驱动桥普遍试验方法介绍     近些年来,能源的短缺和人们对生活质量的更高要求使得新能源汽车得以快速发展。电动驱动桥的产生与发展,则为电驱动车的发展做出了突出贡献。 电驱动桥具有如下优势: 1......
    新能源汽车整车控制系统的基础知识;新能源汽车整车控制系统连接动力电池管理系统、动力电机驱动控制系统;对新能源汽车动力链的各个环节进行管理、协调和监控,以提高整车能量利用效率,确保安全性和可靠性;理解......
    舍弗勒太仓制造基地新能源二期工厂正式启用; 二期工厂主要从事新能源汽车驱动电机及核心零部件生产 卓越运营,绿色发展,打造可持续及数字化智能工厂 签订新投资协议,持续发力新能源汽车业务 深耕......
    配置马达和齿轮箱单元,上部配置逆变器、DC-DC转换器、车载充电器等组成的高压零部件单元。这种零部件配置与许多三合一电动驱动桥采用的形式大致相同。类似于把三合一中,相当于逆变器的部分替换为集成高压零部件的单元。  拆下电缆和外罩的八合一电动驱动桥的......
    电机旋转件,高速、高温、频繁启停伴随着冲击是电动汽车驱动电机的主要工况, 开发能适应本工况条件的系列化密封式深沟球轴承,可以满足混合动力大巴车、纯电动大巴车、纯电动乘用车、纯电动微型车等一系列新能源汽车驱动......
    电机旋转件,高速、高温、频繁启停伴随着冲击是电动汽车驱动电机的主要工况, 开发能适应本工况条件的系列化密封式深沟球轴承,可以满足混合动力大巴车、纯电动大巴车、纯电动乘用车、纯电动微型车等一系列新能源汽车驱动......
    引入碳化硅技术,采埃孚在华第3家电驱动工厂开业;据采埃孚官微消息,采埃孚又一电驱动工厂—采埃孚电驱动系统(沈阳)有限公司近日开业。 作为采埃孚在华的第3家电驱动工厂,沈阳工厂将生产和销售新能源汽车电驱动桥......
    大充电功率可达350kW,可以在22.5分钟内把容量93.4kWh的动力电池从5%充到80%。因此,新能源汽车高压化是技术趋势之一。 新能源汽车驱动电机的供电方式如图1,电池的直流电压输入到逆变器,逆变器将直流电压转换成交流电压后输入到驱动......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>