单片机ADC常见的几种滤波方法

发布时间:2023-03-27  

如今传感器的种类越来越多,数量也越来越多,而这些传感器很多都会用到模拟量,模拟量就离不开ADC。


然而,我们单片机ADC采集的模拟量基本都会经过“滤波”处理才能使用,下面给大家分享一些常见的ADC滤波算法。


一、限幅滤波

1、方法


根据经验判断两次采样允许的最大偏差值A

每次采新值时判断:若本次值与上次值之差<=A,则本次有效;若本次值与上次值之差>A,本次无效,用上次值代替本次。

2、优缺点


克服脉冲干扰,无法抑制周期性干扰,平滑度差。

3、代码


/* A值根据实际调,Value有效值,new_Value当前采样值,程序返回有效的实际值 */

#define A 10

char Value;

char filter()

{

  char new_Value;

  new_Value = get_ad();                                        //获取采样值

  if( abs(new_Value - Value) > A)   return Value;             //abs()取绝对值函数

  return new_Value;

}


二、中位值滤波

1、方法


连续采样N次,按大小排列

取中间值为本次有效值

2、优缺点


克服波动干扰,对温度等变化缓慢的被测参数有良好的滤波效果,对速度等快速变化的参数不宜。

3、代码


#define N 11

char filter()

{

 char value_buf[N];

 char count,i,j,temp;

 for(count = 0;count < N;count++)                                //获取采样值

 {

  value_buf[count] = get_ad();

  delay();

 }

 for(j = 0;j  for(i = 0;i  if(value_buf[i]>value_buf[i+1])

  {

   temp = value_buf[i];

   value_buf[i] = value_buf[i+1];

   value_buf[i+1] = temp;

  }

 return value_buf[(N-1)/2];

}


三、算数平均滤波

1、方法


连续采样N次,取平均

N较大时平滑度高,灵敏度低

N较小时平滑度低,灵敏度高

一般N=12

2、优缺点


适用于存在随机干扰的系统,占用RAM多,速度慢。

3、代码


#define N 12

char filter()

{

 int sum = 0;

 for(count = 0;count  sum += get_ad();

 return (char)(sum/N);

}

四、递推平均滤波

1、方法


取N个采样值形成队列,先进先出

取均值

一般N=4~12

2、优缺点


对周期性干扰抑制性好,平滑度高

适用于高频振动系统

灵敏度低,RAM占用较大,脉冲干扰严重

3、代码


/* A值根据实际调,Value有效值,new_Value当前采样值,程序返回有效的实际值 */

#define A 10

char Value;

char filter()

{

  char new_Value;

  new_Value = get_ad();                                        //获取采样值

  if( abs(new_Value - Value) > A)   return Value;             //abs()取绝对值函数

  return new_Value;

}


五、中位值平均滤波

1、方法


采样N个值,去掉最大最小

计算N-2的平均值

N= 3~14

2、优缺点


融合了中位值,平均值的优点

消除脉冲干扰

计算速度慢,RAM占用大

3、代码


char filter()

{

 char count,i,j;

 char Value_buf[N];

 int sum=0;

 for(count=0;count  Value_buf[count]= get_ad();

 for(j=0;j  for(i=0;i   if(Value_buf[i]>Value_buf[i+1])

   {

     temp = Value_buf[i];

     Value_buf[i]= Value_buf[i+1];

      Value_buf[i+1]=temp;

   }

   for(count =1;count    sum += Value_buf[count];

   return (char)(sum/(N-2));

}


六、限幅平均滤波

1、方法


每次采样数据先限幅后送入队列

取平均值

2、优缺点


融合限幅、均值、队列的优点

消除脉冲干扰,占RAM较多

3、代码


#define A 10

#define N 12

char value,i=0;

char value_buf[N];

char filter()

{

 char new_value,sum=0;

 new_value=get_ad();

 if(Abs(new_value-value)  value_buf[i++]=new_value;

 if(i==N)i=0;

 for(count =0 ;count  sum+=value_buf[count];

 return (char)(sum/N);

}


七、一阶滞后滤波

1、方法


取a=0~1

本次滤波结果=(1-a)* 本次采样 + a * 上次结果

2、优缺点


良好一直周期性干扰,适用波动频率较高场合

灵敏度低,相位滞后

3、代码


/*为加快程序处理速度,取a=0~100*/

#define a 30

char value;

char filter()

{

 char new_value;

 new_value=get_ad();

 return ((100-a)*value + a*new_value);

}


八、加权递推平均滤波

1、方法


对递推平均滤波的改进,不同时刻的数据加以不同权重,通常越新的数据权重越大,这样灵敏度高,但平滑度低。

2、优缺点


适用有较大滞后时间常数和采样周期短的系统,对滞后时间常数小,采样周期长、变化慢的信号不能迅速反应其所受干扰。

3、代码


/* coe数组为加权系数表 */

#define N 12

char code coe[N]={1,2,3,4,5,6,7,8,9,10,11,12};

char code sum_coe={1+2+3+4+5+6+7+8+9+10+11+12};

char filter()

{

 char count;

 char value_buf[N];

 int sum=0;

 for(count=0;count {

  value_buf[count]=get_ad();

 }

 for(count=0;count  sum+=value_buf[count]*coe[count];

 return (char)(sum/sum_coe);

}


九、消抖滤波

1、方法


设置一个滤波计数器

将采样值与当前有效值比较

若采样值=当前有效值,则计数器清0

若采样值不等于当前有效值,则计数器+1

若计数器溢出,则采样值替换当前有效值,计数器清0

2、优缺点


对变化慢的信号滤波效果好,变化快的不好

避免临界值附近的跳动,计数器溢出时若采到干扰值则无法滤波

3、代码


#define N 12

char filter()

{

 char count=0,new_value;

 new_value=get_ad();

 while(value!=new_value)

 {

  count++;

  if(count>=N) return new_value;

  new_value=get_ad();

 }

 return value;

}


十、限幅消抖滤波

1、方法


先限幅 后消抖

2、优缺点


融合了限幅、消抖的优点

避免引入干扰值,对快速变化的信号不宜

3、代码


#define A 10

#define N 12

char value;

char filter()

{

 char new_value,count=0;

 new_value=get_ad();

 while(value!=new_value)

 {

  if(Abs(value-new_value)  {

  count++;

  if(count>=N) return new_value;

  new_value=get_ad();

  }

 return value;

 }

}



------------ END ------------


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    进行运算。 图 4 H桥功率电路原理ADC母线电压采样电路 母线电压采样电路,通过电阻分压送到芯片AD口,参与运算。 图 5 AD母线电压采样原理......
    虚高,输入电压采样用于输入过压/欠压保护。输出采样中使用了电流互感器与电压互感器,大大减小了系统干扰,提高了系统的可靠性。取样电路的原理图如图4所示。 图4 取样电路原理图 对于......
    、主动泄放电路以及温度检测电路等六个基本单位组成。本文选用的控制芯片是TI 公司32 位DSP TMS320F280049PZQR。本文重点介绍采样电路及驱动电路设计。 3.1 电压采样电路 图2中有3......
    证开关信号与转子磁极转过的位置同步,需要有检测转子位置角的传感器。其基本组成部分如图: 除了基本的三相逆变全桥电路外,直流无刷电机驱动电路还需具备各点的采样电路。驱动电路主要的有以下几部分构成 三相逆变桥电路 电流采样电路 直流母线电压采样电路......
    STM32CUBEMX配置工程文件 ②代码实现 ①通过STM32CUBEMX配置工程文件 使能USART3用于调试 PA4外部引脚接的是电压采样电路,将PA4设为ADC1采样通道 使能RCC时钟、配置......
    STM32CubeMx入门教程(5):ADC应用;导语“在本次教程中我们使用指南者开发板的ADC功能,实现ADC电压采样转换。本项目在USART项目(参考USART章节)的基础上配置ADC,通过将采集到的数据转化为电压......
    纳芯微推出全新隔离电压采样NSI1312x系列;纳芯微全新推出的NSI1312x系列隔离电压采样芯片支持正负电压输入和高阻抗输入,支持差分或单端模拟输出,可广泛应用于汽车、工业、大功率电源中的交流和直流电压......
    纳芯微推出全新隔离电压采样NSI1312x系列;纳芯微全新推出的NSI1312x系列隔离电压采样芯片支持正负电压输入和高阻抗输入,支持差分或单端模拟输出,可广泛应用于汽车、工业、大功率电源中的交流和直流电压......
    置看门狗等。 电压采样和过零信号检测电路 电压采样和过零信号检测电路是提高跌落电压和跌落相位精度的关键电路电压采样主要包括额定电压采样和跌落电压采样。这里重点介绍跌落电压采样,具体电路见图2所示。 在图......
    之间存在一定的比例关系,本设计中该比例为1:20;电流的采样先是检测采样电阻上的电压,再经过换算而得到。 要得到最终的电压采样信号,需先经过运放组成的减法电路,然后用电压......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>