详解STM32的时钟系统

发布时间:2023-01-04  

STM32的时钟树

时钟信号推动单片机内各个部分执行相应的指令,时钟就像人的心跳一样。

STM32本身十分复杂,外设非常多,任何外设都需要时钟才能启动,但并不是所有的外设都需要系统时钟那么高的频率,如果都用高速时钟势必造成浪费。同一个电路,时钟越快功耗越大、抗电磁干扰能力越弱。复杂的MCU采用多时钟源的方法来解决这些问题。如下图,是STM32的时钟系统框图。


如上图左边的部分,看到STM32有4个独立时钟源,HSI、HSE、LSI、LSE。

HSI是高速内部时钟,RC振荡器,频率为8MHz,精度不高。

HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。

LSI是低速内部时钟,RC振荡器,频率为40kHz,提供低功耗时钟。 

LSE是低速外部时钟,接频率为32.768kHz的石英晶体。

时钟树的右边红色框中,则是系统时钟通过AHB预分频器,给相对应的外设设置相对应的时钟频率。

其中LSI、LSE是作为IWDGCLK(独立看门狗)时钟源和RTC时钟源使用。而HSI、HSE以及PLLCLK经过分频或者倍频作为系统时钟SYSCLK来使用。

PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。通过倍频之后作为系统时钟的时钟源。

配置时钟

默认时钟

Keil编写程序是默认的时钟为72Mhz,其实是这么来的:

外部高速晶振HSE提供的8MHz(大小与电路板上的晶振相关)通过PLLXTPRE分频器后,进入PLLSRC选择开关,进而通过PLLMUL锁相环进行倍频(x9)后,为系统提供72MHz的系统时钟SYSCLK。之后是AHB预分频器对时钟信号进行分频,然后为低速外设提供时钟。

内部RC振荡器HSI为8MHz,2分频后是4MHz,进入PLLSRC选择开关,通过PLLMUL锁相环进行倍频(最大x16)后为64MHz。

USB时钟



如上图,STM32的USB时钟不能超过48MHz,因此如果时钟源为72MHz,就需要进行1.5分频。

如果时钟源为48MHZ,则进行1分频即可。

把时钟信号输出到外部



STM32可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟,可以把时钟信号输出供外部使用。

AHB分频器

如时钟树图右边的部分,系统时钟通过AHB分频器给外设提供时钟。从左到右可以简单理解为:

系统时钟->AHB分频器->各个外设分频倍频器->外设时钟的设置。

右边部分为:系统时钟SYSCLK通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:

内核总线:送给AHB总线、内核、内存和DMA使用的HCLK时钟。

Tick定时器:通过8分频后送给Cortex的系统定时器时钟。

I2S总线:直接送给Cortex的空闲运行时钟FCLK。

APB1外设:送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给通用定时器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2-7使用。

APB2外设:送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给高级定时器。该倍频器可选择1或者2倍频,时钟输出供定时器1和定时器8使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。需要注意的是,如果APB预分频器分频系数是1,则定时器时钟频率(TIMxCLK)为PCLKx。否则,定时器时钟频率将为 APB 域的频率的两倍:TIMxCLK = 2xPCLKx。

APB1和APB2的对应外设

F1系列中,APB1上面连接的是低速外设,包括电源接口、备份接口、CAN、USB、I2C1、I2C2、USART2、USART3、UART4、UART5、SPI2、SP3等。

APB2上面连接的是高速外设,包括UART1、SPI1、Timer1、ADC1、ADC2、ADC3、所有的普通I/O口(PA-PE)、第二功能I/O(AFIO)口等。

具体可以在stm32f10x_rcc.h中查看外设挂在哪个时钟下。

时钟监视系统(CSS)


另外,STM32还提供了一个时钟监视系统(CSS),用于监视高速外部时钟(HSE)的工作状态。倘若HSE失效,会自动切换(高速内部时钟)HSI作为系统时钟的输入,保证系统的正常运行。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    51单片机时钟精度误差的解决;前几天用STC89C52单片机制作了一个电子时钟,经过一段时间的实验,发现时间精度存在误差,一分钟慢4秒左右。 这可了不得,十分钟就要慢40秒,一天下来不得慢半96......
    51单片机时钟精度误差的解决;前几天用STC89C52单片机制作了一个电子时钟,经过一段时间的实验,发现时间精度存在误差,一分钟慢4秒左右。 这可了不得,十分钟就要慢40秒,一天下来不得慢半96......
    频率。对于运行速度稍微比主时钟慢的时钟域来说,必须定义所谓的多周期约束。否则可能导致整个系统无法达到所需的时钟频率。在没有提供适当约束的情况下,时序估计假设所有时钟域都必须达到主时钟定义的系统时钟......
    是写够了得能停下来,得再用上定时器级联功能,用TIM15的溢出事件作为子定时器(TIM3)的时钟源,计数到预定数值时,TIM3中断里把TIM15关掉——这样可以吗?不行,中断太慢了,这样肯定会写多。感觉......
    。 例如:如果使能信号被用于提供不同的时钟域,则所有的时钟控制单元(如FF、存储器)都要连接到一个主时钟上。这个时钟通常具有系统中最高的时钟频率。对于运行速度稍微比主时钟慢的时钟域来说,必须......
    单片机时钟不准怎么办?这样来调整!;单片机应用中,常常会遇到这种情况,在用单片机制作电子钟或要求根据时钟启控的控制系统时,会突然发现当初校准了的电子时钟的时间竟然变快或是变慢了。 于是,尝试......
    要求)。 当使用外部参考时,ADC14PWRMD设置之间的每次转换的能量差压与未使用参考缓冲器时一样小。这种情况下,较慢的时钟降低ADC的电流消耗,但需要更长时间才能完成。 使用内部参考时,最低能耗模式取决于您的......
    间可以设为变量。 2. 使用这种方式可以灵活的更改脉冲信号的占空比。 方法2 您可以通过设置时钟标志来产生一个占空比为 50% 周期性脉冲信号。 步骤 : 1 打开您的STEP7项目,在设备视图中双击S7 CPU......
    片/300 个逻辑单元(Spartan 3/Cyclone 2)。 Spoc0 有多快? 当然,这取决于您的时钟速度以及您正在运行的指令类型...... 但即使在 100MHz 时,Spoc0 也可......
    生成底层驱动代码) Keil MDK(用于编译和下载代码) 创建STM32项目 首先,使用STM32CubeMX工具创建一个新的STM32项目。选择您想要使用的STM32系列微控制器型号,并设置相应的时钟源、配置......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>