基于S3C2410A嵌入式处理器实现风力发电监控系统的应用设计

发布时间:2023-02-27  

为了适应不同的应用场合,同时考虑到计算机系统的灵活性、可伸缩性以及可裁剪性,一种以应用为中心、以计算机技术为基础、软硬件可裁剪的嵌入式操作系统随之诞生。这种嵌入式系统能适用于对功能、可靠性、成本、体积、功耗要求严格的应用系统。而在众多嵌入式操作系统中,Linux以其体积小、可裁减、运行速度快、网络性能优良、源码公开等优点而被广泛采用。特别是2.6内核版本的Linux更是在实时性能方面有了很大的提高,因此在工业控制场合得到了越来越多的重视和应用。


本文正是在这一背景下,为基于S3C2410的嵌入式平台(扩充了多种外围设备,包括:LCD、A/D、网络芯片等等)构建出一个基于 Linux2.6.16内核的嵌入式系统开发平台,以满足风力发电监控系统开发的需求。


1系统构架

本系统的硬件平台是以32位高性能嵌入式处理器S3C2410A作为系统的CPU,其工作频率最高为203 MHz,具有强大的处理能力。另外,还扩展有多种外围设备,如:分辨率为640×480的26万色TFT液晶显示屏、串口、USB口、网口、64MB Flash、64MB SDRAM等等。可以充分满足风力发电监控系统开发的需求。


本硬件平台的软件构架主要分为以下几个部分:BSP层、操作系统层以及应用层,图1所示是其软件构架图。本系统的硬件平台是由嵌入式微处理器及其外围设备所构成的。硬件抽象层(BSP)是存储在硬件平台ROM或Flash上的负责与硬件底层交流的硬件驱动程序,主要负责对系统进行初始化,并将收集的硬件信息传递到接下来运行的操作系统内核中去。操作系统内核通过BSP来管理系统硬件资源,并为上层软件提供进程调度、内存管理、文件系统、设备驱动等服务。应用层主要负责与用户进行交流。

基于S3C2410A嵌入式处理器实现风力发电监控系统的应用设计

在完成系统的构架设计以后,就可以针对硬件平台进行具体的构建了,其工作主要包括以下几个部分:BootLoader移植、内核移植以及文件系统的建立等,其中内核移植包括网络设备、LCD和USB等驱动的移植。文中针对本系统的设计给出了相关程序的移植。

2 BootLoader移植

BootLoader (引导加载程序)是系统加电后运行的第一段代码。这段小程序用于初始化硬件设备和建立内存空间的映射图,从而将系统的软硬件环境带到一个合适的状态,以便为最终调用操作系统内核准备好正确的环境。


目前,较流行的BootLoader主要有U-boot和Vivi等。本设计主要是以S3C2410为控制器的硬件平台,因此可以选用带有网络功能的 Vivi作为系统的BootLoader。作为引导程序的Vivi一般分为stage1和stage2两大部分。stage1主要是根据CPU的体系结构进行设备初始化等工作,通常都用短小精悍的汇编语言来实现,而stage2则通常用C语言来实现,这样可以实现更加复杂的功能,且代码会具有更好的可读性和可移植性。为了使Vivi更适合本系统的硬件平台,设计时需要对其进行部分修改。

(1)修改编译器

首先要把Vivi中Makefile的有关编译的选项指向安装好的3.4.1版本的交叉编译工具链,将编译所需的Linux文件夹“UNUX- INCLUDE-DIR=”指向交叉编译器所在的文件夹“LINUX-INCLUDE- DIR=/usr/local/arm/3.4.1/include”,并将“CROSS-COMPILE=”项修改为“CROSS- COMPILE=/usr/local/arm/3.4.1/bin/arm-linux-”。

(2)修改启动参数

接着根据硬件平台的实际情况要修改Vivi中Flash分块情况。本系统将Flash划分成四个部分:第一部分用来存放系统的Vivi:第二部分用来存放Vivi以及Linux操作系统的启动参数;第三部分用来存放嵌入式Linux操作系统;最后一部分用来存放文件系统。具体的地址及块大小分配如表1 所列。

修改完以上两项就可以对Vivi进行编译了,之后通过JTAG将生成的二进制代码烧写到Flash的第一部分,即完成了Vivi的移植。


3 内核移植

内核移植和BootLoader移植一样要根据设计的硬件平台来进行。根据本嵌入式系统硬件平台的设计,需修改内核Makefile文件、设置 Flash分区、配置与编译内核等,并完成网络设备、LCD以及USB等驱动的移植,下面简单介绍一下针对本硬件平台的相关移植工作。

(1)内核编译与移植

在交叉编译内核之前,要先对编译选项进行配置。执行“make menuconfig”指令,进人Syetem Type选项,选择对S3C2410系统板的支持,然后配置File System和Block device,接下来使用“make dep”指令设置依赖关系,之后便可以使用“make zImage”指令进行编译。编译内核交叉编译时间相对较长。最终会生成一个文件zImage,这就是编译成功后的ARM Linux内核文件。将编译好的内核镜像文件写入到Flash中,即完成了内核的移植。

(2)网络设备移植

系统中采用CS8900A作为网络芯片,最高支持10 Mb/s的传输率,它使用S3C2410的nGCS3作为片选线,IRQ_EINT9作为外部中断信号线。其驱动移植方法如下:

1)在linux/driver/net/arm目录下加入芯片的驱动程序文件CS8900.h和CS8900.c:

2)在smdk2410_init函数中完成相应寄存器设置;在CS8900_probe()函数中对S3C2410的网络控制寄存器进行设置:加入 _raw_writel(0x221ldll0,S3C2410_BWSCON);和 _raw_writel(0x1f7c,S3C2410_BANKCON3);两个语句;

3)将网卡的物理地址(0x19000000)映射到vSMDK2410_ETH_IO所指向的虚拟地址上去,即在/arch/arm/mach- S3C2410/mach-smdk2410.c文件中的smdk2410_iodesc []结构数组中添加如下内容:{vSMDK2410_ETH_IO,0x19000000,SZ_1M,MTl_DEVICE};

4)配置网络设备驱动的Makefile、Kconfig文件,并对头文件做部分修改。

(3) LCD移植

在2.6.16内核中已经包含了S3C2410的LCD驱动程序,因此,移植的主要工作是要根据驱动程序及LCD屏的实际情况进行初始化。 S3C2410自带5个LCD控制器,每个控制器有不同的功能,必需对每个控制器的参数进行相应的设置才能顺利地启动LCD,这些参数包括:液晶屏类型 (TFT屏或CSTN屏)、颜色位数、垂直度、水平度、控制信号线的极性以及液晶屏的分辨率等等。

本系统采用的是SHARP 8.0英寸的TFT液晶屏。参考该液晶屏手册,根据实际情况设置各个寄存器的参数如表2所列。

设置好液晶屏的参数后,再在平台初始化函数smdk2410_devices[]_initdata中启动液晶屏。最后,修改 drivers/video目录下的Kconfig和drivers/video目录下的Makefile文件。


4 文件系统建立

每种操作系统都有适合自己的文件系统,如:Windows一般采用或NTFS文件系统格式,Linux采用EXT2或EXT3文件系统格式,而嵌入式 Linux操作系统是建立在一种称为YAFFS2(YAFF文件系统的改进版)的针对嵌入式Linux的文件系统之上。因此可根据本系统的硬件平台设计及所采用的Linux内核。构建出YAfTS2文件系统,步骤如下:

(1)在内核中建立YAFFS2目录fs/yaffs2,并把下载的YAFFS2代码(可以从网上下载开源的YAFFS2的源码)复制到该目录下面;

(2)修改Kconfig和Makefile,使其可以配置YAFFS2;

(3)在YAFFS2目录中生成Makefile和Kconfig文件;

(4)根据表1在内核中修改NAND分区;

(5)配置内核时,应选中MTD支持和YAFFS2支持;

(6)编译内核并将其下载到开发板的Flash中;

(7)制作根文件系统下载到Flash的指定地址(地址如表1所示)。

至此,就搭建好了风力发电监控系统开发所需要的软硬件平台。图2所示是基于搭建好的平台并使用Qt/Embeded开发的风力发电监控系统的截图。


5 结束语

本文根据一个特定的目标平台,介绍了如何构建基于Linux 2.6.16的嵌入式开发平台,介绍了移植的主要技术和整个流程,并在Qt/Embedd下开发了风力发电监控软件。掌握这些移植和开发技术,对于开发嵌入式Linux应用系统十分重要,同时对于开发其它类型的嵌入式系统也具有一定的参考意义。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>