一文解析MOS管/三极管/IGBT之间的关系

发布时间:2024-11-09 00:48:11  

图片

图片


PN结:从PN结说起


PN结是半导体的基础,掺杂是半导体的灵魂,先明确几点:


1、P型和N型半导体:本征半导体掺杂三价元素,根据高中学的化学键稳定性原理,会有“空穴”容易导电,因此,这里空穴是“多子”即多数载流子,掺杂类型为P(positive)型;同理,掺杂五价元素,电子为“多子”,掺杂类型为N(negative)型。


2、载流子:导电介质,分为多子和少子,概念很重要,后边会引用


3、空穴”带正电,电子带负电,但掺杂后的半导体本身为电中性


4、P+和N+表示重度掺杂;P-和N-表示轻度掺杂


PN结原理如下图,空穴和电子的扩散形成耗尽层,耗尽层的电场方向如图所示:

图片


(一)二极管


PN结正偏:PN结加正向电压,如下图:

图片


此时P区多子“空穴”在电场的作用下向N区运动,N区多子电子相反,使耗尽层变窄至消失,正向导电OK,也可以理解成外加电场克服耗尽层内电场,实现导电,该电压一般为0.7V或0.3V。二极管正向导通的原理即是如此。


PN结反偏:PN结加反向电压,如下图:

图片


反偏时,多子在电场作用下运动使PN结加宽,电流不能通过,反向截止;二极管反向截止的原理就是这样。但是,此时少子在内外电场的作用下移动,并且耗尽层电场方向使少子更容易通过PN结,形成漏电流。


得出重要结论,划重点:反偏时,多数载流子截止,少数载流子很容易通过,并且比正偏时多数载流子通过PN结还要轻松。


(二)三极管


上边说PN结反偏的时候,少数载流子可以轻易通过,形成电流,正常情况小少子的数量极少,反向电流可忽略不计。


现在我们就控制这个反向电流,通过往N区注入少子的方式,怎么注入,在N区下再加一个P区,并且使新加的PN结正偏,如下:

图片


上图中,发射结正偏,空穴大量进入基区,他们在基区身份仍然是少数载流子的身份,此时,如前所述,这些注入的少数载流子很容易通过反偏的PN结——集电结,到达集电极,形成集电极电流Ic。


三极管放大导通条件是《发射结正偏,集电结反偏》就非常容易理解了,上一张三极管的特性曲线。

图片


这里涉及了饱和区的问题,三极管工作在饱和区时Vce很小,有人说饱和区条件是发射结正偏,集电结也正偏,这很容易让人误解;发射结正偏导通没问题,但集电结并没有达到正偏导通,若集电结正偏导通,就跟两个二极管放一起没区别;


集电结的正偏电压阻碍基区少子向集电极漂移,正偏越厉害,少子向集电极运动越困难,即Ic越小,因此饱和状态下的Ic是小于放大状态下的βIb的,此时,管子呈现出很小的结电阻,即所谓的饱和导通。


(三)MOS管


MOS管结构原理:以N-MOS为例,a:P型半导体做衬底;b:上边扩散两个N型区,c:覆盖SiO2绝缘层;在N区上腐蚀两个孔,然后金属化的方法在绝缘层和两个孔内做成三个电极:G(栅极)、D(漏极)、S(源极)。

图片


工作原理:一般衬底和源极短接在一起,Vds加正电压,Vgs=0时,PN结反偏,没有电流,Vgs加正电压,P衬底上方感应出负电荷,与P衬底的多子(空穴)极性相反,被称为反型层,并把漏源极N型区连接起来形成导电沟道,当Vgs比较小时,负电荷与空穴中和,仍无法导电,当Vgs超过导通阈值后,感应的负电荷把N型区连接起来形成N沟道,开始导电。Vgs继续增大,沟道扩大电阻降低,从而电流增大。

图片


为改善器件性能,出现了VMOS、UMOS等多种结构,基本原理都一样。


(四)IGBT


IGBT是MOS和BJT的复合器件,到底是怎么复合的,往下看。从结构上看,IGBT与功率MOS的结构非常类似,在背面增加P+注入层(injectionlayer)。

图片


得出IGBT的导电路径:

图片


由于上图P阱与N-漂移区的PN结成反偏状态,于是产生了JFET效应,如下图。

图片


于是,在上述IGBT结构中,电子流通方向的电阻可用下图表示,结合上边描述,一目了然。

图片


为了减小上述电阻,并且提高栅极面积利用率,沟槽栅IGBT变成主流,作用效果如下图。

图片


此外,为了提升IGBT耐压,减小拖尾电流,在N–漂移区、背面工艺(减薄和注入)上下了不少功夫。


N-区下的功夫包含以下几种:

图片


1、PT:以高浓度的P+直拉单晶硅为起始材料,先生长一层掺杂浓度较高的N型缓冲层(N+buffer层),然后再继续淀积轻掺杂的N-型外延层作为IGBT的漂移区,之后再在N-型外延层的表面形成P-base、N+source作为元胞,最后根据需要减薄P型衬底。


2、NPT:采用轻掺杂N-区熔单晶硅作为起始材料,先在硅面的正面制作元胞并用钝化层保护好,之后再将硅片减薄到合适厚度。最后在减薄的硅片背面注入硼,形成P+collector。


3、FS:以轻掺杂N-区熔单晶硅作为起始材料,先在硅面的正面制作元胞并用钝化层保护好,在硅片减薄之后,首先在硅片的背面注入磷,形成N+截止层,最后注入硼,形成P+collector。


三极管,MOSFET,IGBT的区别?为什么说IGBT是由BJT和MOSFET组成的器件?


要搞清楚IGBT、BJT、MOSFET之间的关系,就必须对这三者的内部结构和工作原理有大致的了解。


BJT


双极性晶体管,俗称三极管。内部结构(以PNP型BJT为例)如下图所示。

图片


BJT内部结构及符号


双极性即意味着器件内部有空穴和电子两种载流子参与导电,BJT既然叫双极性晶体管,那其内部也必然有空穴和载流子,理解这两种载流子的运动是理解BJT工作原理的关键。


由于图中e(发射极)的P区空穴浓度要大于b(基极)的N区空穴浓度,因此会发生空穴的扩散,即空穴从P区扩散至N区。同理,e(发射极)的P区电子浓度要小于b(基极)的N区电子浓度,所以电子也会发生从N区到P区的扩散运动。


这种运动最终会造成在发射结上出现一个从N区指向P区的电场,即内建电场。该电场会阻止P区空穴继续向N区扩散。倘若我们在发射结添加一个正偏电压(p正n负),来减弱内建电场的作用,就能使得空穴能继续向N区扩散。


扩散至N区的空穴一部分与N区的多数载流子——电子发生复合,另一部分在集电结反偏(p负n正)的条件下通过漂移抵达集电极,形成集电极电流。


值得注意的是,N区本身的电子在被来自P区的空穴复合之后,并不会出现N区电子不够的情况,因为b电极(基极)会提供源源不断的电子以保证上述过程能够持续进行。这部分的理解对后面了解IGBT与BJT的关系有很大帮助。


MOSFET


金属-氧化物-半导体场效应晶体管,简称场效晶体管。内部结构(以N-MOSFET为例)如下图所示。

图片


MOSFET内部结构及符号


在P型半导体衬底上制作两个N+区,一个称为源区,一个称为漏区。漏、源之间是横向距离沟道区。在沟道区的表面上,有一层由热氧化生成的氧化层作为介质,称为绝缘栅。在源区、漏区和绝缘栅上蒸发一层铝作为引出电极,就是源极(S)、漏极(D)和栅极(G)。


MOSFET管是压控器件,它的导通关断受到栅极电压的控制。我们从图上观察,发现N-MOSFET管的源极S和漏极D之间存在两个背靠背的pn结,当栅极-源极电压VGS不加电压时,不论漏极-源极电压VDS之间加多大或什么极性的电压,总有一个pn结处于反偏状态,漏、源极间没有导电沟道,器件无法导通。


但如果VGS正向足够大,此时栅极G和衬底p之间的绝缘层中会产生一个电场,方向从栅极指向衬底,电子在该电场的作用下聚集在栅氧下表面,形成一个N型薄层(一般为几个nm),连通左右两个N+区,形成导通沟道,如图中黄色区域所示。当VDS>0V时,N-MOSFET管导通,器件工作。


IGBT


IGBT的结构图

图片


IGBT内部结构及符号


黄色色块表示IGBT导通时形成的沟道。首先看黄色虚线部分,细看之下是不是有一丝熟悉之感?


这部分结构和工作原理实质上和上述的N-MOSFET是一样的。当VGE》0V,VCE》0V时,IGBT表面同样会形成沟道,电子从n区出发、流经沟道区、注入n漂移区,n漂移区就类似于N-MOSFET的漏极。


蓝色虚线部分同理于BJT结构,流入n漂移区的电子为PNP晶体管的n区持续提供电子,这就保证了PNP晶体管的基极电流。我们给它外加正向偏压VCE,使PNP正向导通,IGBT器件正常工作。


这就是定义中为什么说IGBT是由BJT和MOSFET组成的器件的原因。


此外,标注红色部分,这部分在定义当中没有被提及的原因在于它实际上是个npnp的寄生晶闸管结构,这种结构对IGBT来说是个不希望存在的结构,因为寄生晶闸管在一定的条件下会发生闩锁,让IGBT失去栅控能力,这样IGBT将无法自行关断,从而导致IGBT的损坏。


IGBT和BJT、MOSFET之间的联系


模块引脚排序及内部结构。该模块额定电流15A、耐压600V。其特点如下:a.上臂IGBT:驱动电路、自举电路、欠压保护;b.下臂IGBT:驱动电路、短路保护、欠压......

.采样电阻距离Nu,Nv,Nw引脚应该尽量的短,减少走线带来的寄生电感; 3.Csc保护RC的走线应该尽量的短,且滤波电容的地最好接到控制地而非功率地; 4.PN两端的吸收电容放在距离模块越近,对IGBT......
波电容的地最好接到控制地而非功率地; PN两端的吸收电容放在距离模块越近,对IGBT产生的Vce尖峰吸收效果越好; 自举电容和稳压管放置在距离模块引脚最近的地方,每一路之间应考虑电气间隙和爬电距离要求;自举......
在全球电机驱动市场得以广泛应用。 不仅如此,针对PCB连接采用Press-Fit引脚和焊接方式的应用,赛米控丹佛斯还推出了采用行业标准封装的“SEMITOP® E”系列产品,由于其结构与现有的IGBT模块引脚......
电动汽车牵引逆变器解决方案。 作为协议的一部分,安森美将首先向大众汽车交付EliteSiC 1200V牵引逆变器功率模块。EliteSiC电源模块引脚对引脚兼容,可轻松将解决方案扩展到不同功率级别和电机类型。一年......
3.5mm耳机插座引脚定义的解析;2.5mm耳机插座_3.5mm耳机插座引脚定义_3.5耳机插座引脚 耳机插座引脚定义,咱们有分很多种,如3脚耳机插座引脚定义、4脚耳机插座引脚定义、5脚耳机插座引脚定义......
引脚和焊接方式的应用,赛米控丹佛斯还推出了采用行业标准封装的“SEMITOP E”系列产品,由于其结构与现有的IGBT模块引脚兼容,因此也可使用罗姆的1200V IGBT“RGA系列”。此外......
产品,由于其结构与现有的IGBT模块引脚兼容,因此也可使用罗姆的1200V IGBT“RGA系列”。此外,“SEMITOP”系列中预计还会新增将三相逆变电路集成于一个模块的六单元结构产品,以及......
手册主要用于芯片选型和设计原理图时参考,参考手册主要用于在编程的时候查阅。在数据手册中,有关引脚定义的部分在 Pinouts and pin description 这个小节中。数据手册中对引脚定义具体定义......
手册主要用于芯片选型和设计原理图时参考,参考手册主要用于在编程的时候查阅。在数据手册中,有关引脚定义的部分在 Pinouts and pin description 这个小节中。数据手册中对引脚定义具体定义......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>