以89C51单片机为核心器件的自动控制系统编码译码显示实验电路设计

发布时间:2023-03-07  

引 言

在日常数字逻辑电路实验中编码译码显示实验电路是编码、译码、显示三个电路的综合运用, 在数字逻辑实验电路中具有重要的地位, 在实验的过程中, 时常会出现显示结果的抖动, 经研究出现这种现象主要原因是:编码电路的编码信号输入采用手工拨盘方式, 产生的编码输入信号往往不稳定; 另外, 电路控制性能较差,不能达到自动复位, 为此有必要对现有电路进行改进,在电路的设计上采用89C51 单片机为控制电路制作而成, 自动提供稳定编码输入信号, 显示结果稳定性和电路控制性能大大提升, 提高了教学实验质量。


1 编码译码显示实验电路的基本结构

编码译码显示电路的基本结构如图1 所示, 主要由控制电路、编码信号发生器、编码译码显示电路等组成,控制电路产生编码信号作为编码译码显示电路输入信号, 译码电路将编码信号转换成对应的七段数码显示信号, 送至LED 数码管显示。

以89C51单片机为核心器件的自动控制系统编码译码显示实验电路设计

图1 编码译码显示实验结构图。


2 系统硬件设计

控制系统和编码信号发生器采用89C51 单片机实现。89C51 性价比较高, 采用12 MHz 晶振, 其内部带有4 KB 的FLASH ROM, 无须外扩程序存储器。编码译码电路没有大量运算和暂存数据。89C51 内部的128 B片内RAM 已能满足要求, 无须外扩片外RAM。

系统硬件设计如图2 所示。

以89C51单片机为核心器件的自动控制系统编码译码显示实验电路设计

图2 编码译码显示实验电路。


2. 1 编码信号发生器电路

编码信号由89C51 内部编程控制, 键盘输入 0~ 8从P0. 0~ P0. 7 口送给编码器74LS147, 9 从P2. 0 口送给编码器, 具体编码见表1。

表1 编码信号表

以89C51单片机为核心器件的自动控制系统编码译码显示实验电路设计

2. 2 键盘设计

键盘采用4×3 阵列结构设计, P1. 0~ P1. 3 为键盘扫描高4 位, P1. 4~ P1. 6 为低4 位。设计有 0 ~ 9 、Rst( 复位) 、S er( 顺序) 。列线通过电阻接正电源, 并将行线所接的单片机的I/ O 口作为输出端, 而列线所接的I/ O 口则作为输入。当按键没有按下时, 所有的输出端都是高电平, 代表无键按下。行线输出是低电平,一旦有键按下, 则输入线就会被拉低, 这样, 通过读入输入线的状态就可得知是否有键按下。


2. 3 编码译码显示电路

编码译码显示电路主要由编码器( 74LS147) 、六反相器( 74AC04) 、译码器( 74LS247) 、七段LED 数码管组成。编码器74LS147 的1~ 5 脚, 10~ 13 脚为编码输入端, 低电平有效, 实验时可用接地作为低电平输入;14, 6, 7, 9 脚为编码输出( 反码) ; 16, 8 脚为电源正负极。


译码器74LS247 的6, 2, 1, 7 脚为译码输入( 高电平有效) ; 9~ 15 为译码输出; 8, 16 脚为电源正负极。六反相器( 74AC04) 主要是解决编码器74HC147 和译码器74LS247 信号匹配问题, 共有6 组输入与输出, 只取其中4 组。七段LED 数码管主要是显示译码器输出状态。


电路主要原理是在74LS147 的以89C51单片机为核心器件的自动控制系统编码译码显示实验电路设计输入011111111~ 111111110, 编码后得到4 位反码, 经74AC04 反相后送到74LS247, 由74LS247 驱动LED数码管, 正确时能显示0~ 9。


3 系统软件设计

软件设计由初始化、键盘扫描、编码程序三部分组成。开始进行初始化, P0、P2 口按复位状态附值输出,LED 无显示。然后4 ! 3 阵列式键盘开始进行扫描, 当判断有键按下时, 延时去键抖动, 判断是否务抖动, 当确定判断是有键按下时, 等待闭合键释放, 保存键值。根据键值调用编码程序, 将表1 对应的编码送到P0, P2口输出, 主程序流程图如图3 所示。

以89C51单片机为核心器件的自动控制系统编码译码显示实验电路设计

图3 主程序流程图。

当按Ser( 顺序序列) 键时, 依次按1~ 9 编码值送至P0, P2 口, 间隔0. 5 s 输出。Ser 编码编码子程序如下:

以89C51单片机为核心器件的自动控制系统编码译码显示实验电路设计

4 系统仿真与调试

Proteus 是一个基于Pro Spice 混合模型仿真器的,完整的嵌入式系统软、硬件设计仿真平台。编码译码显示电路能很方便地在此平台上进行调试和仿真, 延时时间同选用的单片机和所用晶体振荡器有关, 在调试时须注意。


5 结 语

提出了一款编码译码显示实验电路设计, 其控制系统和编码信号发生器采用89C51 单片机实现, 经Proteus 仿真和实验调试结果来看, 大大改善了电路的性能, 电路制作方便、操作简单, 在数字逻辑电路实验教学中具有一定的推广价值, 电路主要不足是不能实现故障自动检查, 如果能对电路故障进行自动检测, 电路性能将更加完善。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    采用GPIB仪器控制技术实现局域网的虚拟实验平台设计;随着招生规模的不断扩大,国内普通高等院校实验设备往往比较陈旧,不能及时更新,从而无法跟上教育的飞速发展。目前,高等工科院校仍沿用传统的实验......
    灯输出和每个转向指示灯处测量的平均电压和/或电流值得出的。 运行仿真后,您将可以访问相应的实验报告和“结果”部分中的绘图信号,也可以通过双击打开它们。正常运行下应该可以看到如下实验报告图3和信号波形图4。 图3 标称分析实验报告......
    要有所甄别,但是经典的都可以读一读。如《模拟电子技术基础》和《数字电子技术基础》,这些书籍提供了深入的理论基础。网上有很多免费电子版,但是还是支持购买纸质版学习哈。 技术......
    对近百家整机大企的调研,峰会将围绕整机工程师最关注的议题开展深入探讨,特别设置了五大热点论坛:800V超充技术创新论坛、储能逆变器技术创新论坛、大功率数字电源技术创新论坛、智能网联汽车电子技术......
    逆变器及UPS的广泛应用,逆变电源的应用场合也越来越多,成了电力电子技术中不可缺少的部件。而传统逆变电源基于模拟元件的设计,没有可编程的能力,使得逆变电源的可扩展能力差,没有显示功能等问题。因此......
    用,联合产业伙伴,在架构设计、技术攻关、终端研制、示范验证、安全防护等方面开展了体系化研究,取得了全面突破,实现了“5G+数字电网”从无到有的原创性探索,得到业内广泛认可。在标准体系建设方面,累计50余篇电力需求和技术实......
    室效益显著。案例一:格创东智为国内某半导体客户打造的LIMS系统包含委托申请、状态查询、任务指派、任务提醒、实验报告及统计分析等功能。客户可以及时查看实验室管理指标数字化概况,覆盖产品可靠度、设备......
    室效益显著。案例一:格创东智为国内某半导体客户打造的LIMS系统包含委托申请、状态查询、任务指派、任务提醒、实验报告及统计分析等功能。客户可以及时查看实验室管理指标数字化概况,覆盖产品可靠度、设备......
    室效益显著。 案例一:格创东智为国内某半导体客户打造的LIMS系统包含委托申请、状态查询、任务指派、任务提醒、实验报告及统计分析等功能。客户可以及时查看实验室管理指标数字化概况,覆盖......
    福禄克730G智能数字压力校验仪的概述及功能特点;福禄克新型730G 智能数字压力校验仪,自带Hart 通讯功能,搭配压力校验泵,实现对压力表、压力开关、压力变送器的高效、准确的测量和校验;是计量研究院和企业建立压力实验......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>