高压栅极驱动IC自举电路的设计与应用指南

发布时间:2022-12-23  

本文讲述了一种运用功率型MOSFET和IGBT设计高性能自举式电路的系统方法,适用于高频率,大功率及高效率的开关应用场合。不同经验的电力电子工程师们都能从中获益。在大多数开关应用中,开关功耗主要取决于开关速度。因此,对于绝大部分本文阐述的大功率开关应用,开关特性是非常重要的。

本文引用地址:


自举式电源是一种使用最为广泛的,给高压集成电路(IC)的高端电路供电的方法。这种自举式电源技术具有简单,且低成本的优点。但是,它也有缺点,一是占空比受到自举电容刷新电荷所需时间的限制,二是当开关器件的源极接负电压时,会发生严重的问题。本文分析了最流行的自举电路解决方案;包括寄生参数,自举电阻和电容对浮动电源充电的影响。


01 高速栅极驱动电路


自举栅极驱动技术


本节重点讲在不同开关模式的功率转换应用中,功率型MOSFET和IGBT对自举式栅极驱动电路的要求。当输入电平不允许上桥N沟道功率型MOSFET或IGBT使用直接式栅极驱动电路时,我们就可以考虑自举式栅极驱动技术。这种方法被用作栅极驱动和伴发偏置电路,两者都以主开关器件的源极作为基准。


驱动电路和以两个输入电压作为摆幅的偏置电路,都与器件的源极轨连。但是,驱动电路和它的浮动偏置可以通过低压电路实现,因为输入电压不会作用到这些电路上。驱动电路和接地控制信号通过一个电平转换电路相连。该电平转换电路必须允许浮动上桥和接地下桥电路之间存在高电压差和一定的电容性开关电流。高电压栅极驱动 IC 通过独特的电平转换设计差分开。为了保持高效率和可管理的功耗,电平转换电路在主开关导通期间,不能吸收任何电流。对于这种情况,我们经常使用脉冲式锁存电平转换器,如图1所示。


1670851756242714.png

图1  上桥驱动集成电路的电平转化器


自举式驱动电路工作原理


自举式电路在高电压栅极驱动电路中是很有用的,其工作原理如下。当VS降低到IC电源电压VDD或下拉至地时(下桥开关导通,上桥开关关断),电源VDD通过自举电阻,RBOOT,和自举二极管,DBOOT,对自举电容CBOOT,进行充电,如图2所示。当 VS被上桥开关上拉到一个较高电压时,由VBS对该自举电容充电,此时,VBS电源浮动,自举二极管处于反向偏置,轨电压(下桥开关关断,上桥开关导通)和IC电源电压VDD,被隔离开。


17.jpg

图2  自举式电源电路


自举式电路的缺点


自举式电路具有简单和低成本的优点,但是,它也有一些局限。


占空比和导通时间受限于自举电容CBOOT,刷新电荷所需时间的限制。


这个电路最大的难点在于:当开关器件关断时,其源极的负电压会使负载电流突然流过续流二极管,如图3所示。


该负电压会给栅极驱动电路的输出端造成麻烦,因为它直接影响驱动电路或PWM控制集成电路的源极VS引脚,可能会明显地将某些内部电路下拉到地以下,如图4所示。另外一个问题是,该负电压的转换可能会使自举电容处于过压状态。


自举电容CBOOT,通过自举二极管DBOOT,被电源VDD瞬间充电。


由于VDD电源以地作为基准,自举电容产生的最大电压VDC等于VDD加上源极上的负电压振幅。


18.jpg

图3  半桥式应用电路


1670851725247942.png

图4  关断期间的VS波形


Vs 引脚产生负电压的原因


如图5所示,下桥续流二极管的前向偏置是已知的将VS下低COM(地)以下的原因之一。


主要问题出现在整流器换向期间,仅仅在续流二极管开始箝压之前。


在这种情况下,电感LS1和LS2会将VS压低到COM以下,甚至如上所述的位置或正常稳态。


该负电压的放大倍数正比于寄生电感和开关器件的关断速度,di / dt ;它由栅极驱动电阻,RGATE和开关器件的输入电容,Ciss决定。


Cgs与Cgd的和,称为密勒电容。


1670851708485494.png

图5  降压转换器


图6描述了上桥N沟道MOSFET关断期间的电压波形。


1670851689250480.png

图6  关断期间的波形


Vs 引脚电压下冲的影响


如果欠冲超过数据手册中规定的绝对最大额定值,则栅极驱动IC将损坏,或者上桥输出暂时无法对输入转换做出响应,如图7和图8所示。


图7显示闭锁情况,即上桥输出无法通过输入信号耳改变。这种情况下,半桥拓扑的外部、主电源、高端管,和下桥开关中发生短路。


22.jpg

图7  闭锁情况下的波形


图8显示遗漏情况,即上桥输出无法对输入转换做出响应。这种情况下,上桥栅极驱动器的电平转换器将缺少工作电压余量。需要注意的是,大多数事实证明上桥通常不需要在一个开关动作之后立即改变状态。


23.jpg

图8  信号丢失情况下的波形


考虑闭锁效应


最完整的高电压栅极驱动集成电路都含有寄生二极管,它被前向或反向击穿,就可能导致寄生SCR闭锁。闭锁效应的最终结果往往是无法预测的,破坏范围从器件工作时常不稳定到完全失效。栅极驱动集成电路也可能被初次过压之后的一系列动作间接损坏。例如,闭锁导致输出驱动置于高态,造成交叉传导,从而导致开关故障,并最终使栅极驱动器集成电路遭受灾难性破坏。


如果功率转换电路和/或栅极驱动集成电路受到破坏,这种失效模式应被考虑成一个可能的根本原因。下面的理论极限可用来帮助解释Vs电压严重不足和由此产生闭锁效应之间的关系。


在第一种情况中,使用了一个理想自举电路摄,该电路的VDD由一个零欧姆电源驱动,通过一个理想二极管连接到VB,如图9所示。当大电流流过续流二极管时,由于di / dt很大,Vs电压将低于地电压。这时,闭锁危险发生了,因为栅极驱动器内部的寄生二极管DBS,最终沿Vs到VB方向导通,造成下冲电压与VDD叠加,使得自举电容被过度充电,如图10所示。


例如:如果VDD =15 V, Vs 下冲超过10 V,迫使浮动电源电压在25 V 以上,二极管DBs有被击穿的危险,进而产生闭锁。


1670851614744177.png

图9  情况1:理想自举电路


1670851603982323.png

图10  情况1的VB和VS波形


假想自举电源被理想浮动电源替代,如图11所示,这时,VBS在任何情况下都是恒定的。注意利用一个低电阻辅助电源替代自举电路,就能实现这种情况。这时,如果Vs过冲超过数据表(datasheet)规定的最大VBS电压,闭锁危险就会发生,因为寄生二极管DBCOM最终沿COM端到VB方向导通,如图12所示。


1670851587170444.png

图11  情况2:理想浮动电源


1670851575141557.png

图12  情况2的VB和VS波形


一种实用的电路可能处在以上两种极限之间,结果是 VBS 电压稍微增大,和 VB 稍低于 VDD ,如图13所示。


1670851559323789.png

图13  Vg和Vs的典型响应


准确地说,任何一种极限情况都是流行的,检验如下。如果 Vs 过冲持续时间超过10个纳秒,自举电容 CBOOT 被过充电,那么高端栅极驱动器电路被过电压应力破坏,因为 VBS 电压超过了数据表指定的绝对最大电压(VBSMAX )。设计一个自举电路时,其输出电压不能超过高端栅极驱动器的绝对最大额定电压。


寄生电感效应


负电压的振幅是:


1670851542357167.png


为了减小流过寄生电感的电流随时间变化曲线的斜度,要使等式1中的导数项最小。


例如:如果带100 nH寄生电感的10 A 、25 V栅极驱动器在50 ns内开关,则Vs与接地之间的负电压尖峰是20 V。


02 自举部件的设计流程


选择自举电容


自举电容(CBOOT)每次都被充电,此时,下桥驱动器导通,输出电压低于栅极驱动器的电源电压(VDD)。自举电容仅当上桥开关导通的时候放电。自举电容给上桥电路提供电源(VBS)。首先要考虑的参数是上桥开关处于导通时,自举电容的最大电压降。允许的最大电压降(VBOOT)取决于要保持的最小栅极驱动电压(对于上桥开关)。如果 VGSMIN是最小的栅一源极电压,电容的电压降必须是:


1670851522345716.png


其中: 


VDD =栅极驱动器的电源电压;和


VF =自举二极管正向电压降[V]


计算自举电容为:


31.png


其中 QTOTAL 是电容器的电荷总量。


自举电容的电荷总量通过等式4计算:


1670851502213878.png


其中:


QGATE =栅极电荷的总量当


ILKGS =开关栅一源级漏电流;


ILKCAP =自举电容的漏电流;


lQBS =自举电路的静态电流;


ILK =自举电路的漏电流;


QLS =内部电平转换器所需要的电荷,对于所有的高压栅极驱动电路,该值为3 nC ;


tON =上桥导通时间;


LKDIODED =自举二极管的漏电流;


电容器的漏电流,只有在使用电解电容器时,才需要考虑,否则,可以忽略不计。


例如:当使用外部自举二极管时,估算自举电容的大小。


●栅极驱动 IC =FAN7382( ON Semiconductor )


●开关器件=FCP20N60( ON Semiconductor )


●自举二极管=UF4007


●VDD =15 V 


●QGATE =98 nC (最大值)


●LKGS =100 nA (最大值)


●ILKCAP =0(陶瓷电容)


●lQBS =120 μA (最大值) ILK =50 μA (最大值)


●QLS=3 nC 


● TON =25 μs (在 fS=20 kHz 时占空比=50%)


● ILKDIODE =10 μA 


如果自举电容器在高端开关处于开启状态时,最大允许的电压降是1.0 V ,最小电容值通过等式3计算。


1670851486536354.png


自举电容计算如下:


34.png


外部二极管导致的电压降大约为0.7 V 。假设电容充电时间等于上桥导通时间(占空比50%)。根据不同的自举电容值,使用以下的等式:


1670851466276829.png


推荐的电容值是100nF~570 nF ,但是实际的电容值必须根据使用的器件来选择。如果电容值过大,自举电容的充电时间减少,下桥导通时间可能不足以使电容达到自举电压。


选择自举电阻


当使用外部自举电阻时,电阻 RBOOT带来一个额外的电压降:


36.png


其中:


ICHARGE =自举电容的充电电流;


RВOOT =自举电阻;和


tCHARGE =自举电容的充电时间(下桥导通时间)


不要超过欧姆值(典型值5~10Ω),将会增加 VBS时间常数。当计算最大允许的电压降(VBOOT)时,必须考虑自举二极管的电压降。如果该电压降太大或电路不能提供足够的充电时间,我们可以使用一个快速恢复或超快恢复二极管


03 考虑自举应用电路


自举启动电路


如图1所示,自举电路对于高电压栅极驱动器是很有用的。但是,当主要 MOSFET (Q1)的源极和自举电容(CBOOT)的负偏置节点位于输出电压时,它有对自举电容进行初始化启动和充电受限的问题。启动时,自举二极管(DBOOT)可能处于反偏,主要 MOSFET (Q1)的导通时间不足,自举电容不能保持所需要的电荷,如图1所示。


在某些应用中,如电池充电器,输出电压在输入电源加载到转换器之前可能已经存在了。给自举电容(CBOOT)提供初始电荷也许是不可能的,这取决于电源电压(VDD)和输出电压(VOUT)之间的电压差。假设输入电压(VDC和输出电压(VOUT)之间有足够的电压差,由启动电阻(RSTART),启动二极管(DSTART)和齐纳二极管(DSTART)组成的电路,可以解决这个问题,如图14所示。


在此启动电路中,启动二极管 DSTART 充当次自举二极管,在上电时对自举电容(CBOOT)充电。自举电容(CBOOT)充电后,连接到齐纳二极管 Dz ,在正常工作时,这个电压应该大于驱动器的电源电压(VDD)。启动电阻限制了自举电容的充电电流和齐纳电流。为了获得最大的效率,应该选择合适的启动电阻值使电流极低,因为电路中通过启动二极管的自举路径是不变的。


1670851441963178.png

图14  简单的自举启动电路


自举二极管串联电阻


在第一个选项中,自举电路包括一个小电阻, RBOOT ,它串联了一个自举二极管,如图15所示。自举电阻 RBOOT ,仅在自举充电周期用来限流。自举充电周期表示 Vs 降到集成电路电源电压 VDD 以下,或者 Vs 被拉低到地(下桥开关导通,上桥开关关闭)。电源 Vcc ,通过自举电阻 RBOOT和二极管 DBOOT ,对自举电容 CBOOT 充电。自举二极管的击穿电压( BV)必须大于 VDC ,且具有快速恢复时间,以便最小化从自举电容到 Vcc 电源的电荷反馈量。


1670851424442312.png图15  添加一个串联DBOOT的电阻


这是一种简单的,限制自举电容初次充电电流的方法,但是它也有一些缺点。占空比受限于自举电容 CBOOT刷新电荷所需要的时间,还有启动问题。不要超过欧姆值(典型值5~10 Ω),将会增加 VBS 时间常数。最低导通时间,即给自举电容充电或刷新电荷的时间,必须匹配这个时间常数。该时间常数取决于自举电阻,自举电容和开关器件的占空比,用下面的等式计算:


39.png


其中RBOOT是自举电阻; CBOOT是自举电容; D 是占空比。


例如,如果 RBOOT=10,СBOOT=1 μF , D =10%;时间常数通过下式计算:


40.png


即使连接一个合理的大自举电容和电阻,该时间常数可能增大。这种方法能够缓解这个问题。不幸的是,该串联电阻不能解决过电压的问题,并且减缓了自举电容的重新充电过程。


VS 与 VOUT 之间的电阻


在第二个选项中,自举电路的 VS 和 VOUT 之间,添加上一个小电阻 RVS ,如图16所示。RVS的建议值在几个欧姆左右。


1670851393322133.png

图16  在自举电路中,增加 RVS 


RVS不仅用作自举电阻,还用作导通电阻和关断电阻,如图17。自举电阻,导通电阻和关断电阻通过下面的等式计算:


42.jpg

图17  导通和关断的电流路径


VS箝压二极管和重布置栅极电阻


在第三个选项中,自举电路把栅极电阻重新布置到 VS和 VOUT 之间,并且在 VS和地之间增加一个低正向压降的肖特基二极管,如图18所不。 VB 和 VS之间的电压差,应保持在数据表规定的绝对最大额定值范围内,并且必须符合下列等式:


1670851366502484.png

图18  箝位结构


重布置栅极电阻;双重目的


栅极电阻设置了MOSFET的导通速度和关断速度,限制了在主开关源极的电压负向瞬态时,肖特基二极管的电流。另外,连接到 CBOOT两端的双二极管,确保自举电容不会出现过电压。该电路唯一的潜在危险是,自举电容的充电电流必须流过栅极电阻。 CBOOT 和 RGATE 的时间常数减缓再充电过程,可能成为 PWM 占空比的限制因数。


第四个选择,包括在 VS 和 VOUT 之间,重新布置一个栅极电阻,以及在 VS 和地之间放置一个箝压器件,如图19所示,布置了一个齐纳二极管和600 V 二极管。根据下列规则,量化齐纳电压:


1670851351913631.png

图19  带齐纳二极管的箝压结构


选择 HVIC 电流能力


对于每一种额定驱动电流,计算指定时间内所能切换的最大栅极电荷QG,如表1所示。


1670851334963593.png


例如,100 ns 的开关时间是:


100 kHz 时转换器开关周期的1%;


300 kHz 时转换器开关周期的3%;以此类推。


1.所需的额定栅极驱动电流取决于在开关时tSW - ON / OFF 内,必须移动的栅极电荷数QG(因为开关期间的平均栅极电流是IG):


46.png


2.最大栅极电荷 QG ,从MOSFET数据表得到。


如果实际栅极驱动电压 VGS与规格表上的测试条件不同,使用 VGS 与 QG 曲线。数据表中的值乘上并联的MOSFET数量就是所需的值。


3.tSW ON / OFF 表示所需的MOSFET开关速度。如果该值未知,取开关周期 tSW的2%:


47.png


如果通道(V -I)开关损耗主要受开关转换(导通或关断)支配,需要根据转换调整驱动器。对于受籍制的电感性开关(通常情况),每次转换的通道开关损耗估算如下:


48.png


其中VDS和ID是每个开关间期的最大值。


4.栅极驱动器的近似电流驱动能力计算如下


a .拉电流能力(导通)


49.png


b .灌电流能力(关断)


50.png


其中:


QG = VGS = VDD 时,


MOSFET 的栅极电荷;


tSW _ ON / OFF = MOSFET 开关导通/关断时间;



1.5=经验因子(受通过驱动器输入级的延迟和寄生效应的影响)


栅极电阻设计流程


输出晶体管的开关速度受导通和关断栅极电阻的控制,这些电阻控制了栅极驱动器的导通和关断电流。本节描述了有关栅极电阻的基本规则,通过引入栅极驱动器的等效输出电阻来获取所需的开关时间和速度。图20描述了栅极驱动器的等效电路和在导通和关断期间的电流流动路径,其中包括栅极驱动器和开关器件。


51.jpg

图20  栅极驱动器的等效电路


图21显示了开关器件在导通和关断期间的栅极一电荷传输特性。


52.jpg

图21  栅极电荷传输特性


量化导通栅极电阻


根据开关时间 tsw ,选择导通闸极电阻 Rg ( ON ),以获得所需的开关时间。根据开关时间确定电阻值时,我们需要知道电源电压 VDD(或VBS),栅极驱动器的等效导通电阻(RDRV ( ON )),和开关器件的参数(Qgs Qgd ,和 Vgs ( th ))


开关时间定义为到达坪电压(给 MOSFET 提供了总共 Qgs + Qgd 的电荷)末端所花费的时间,如图21所示。


导通栅极电阻计算如下:


53.png


其中 Rg ( ON )是栅极导通电阻, RDRv ( ON )是驱动器的等效导通电阻。


输出电压斜率


导通栅极电阻 Rg ( ON )通过控制输出电压斜率(dVOUT/ dt)来决定。当输出电压是非线性时,最大输出电压斜率可以近似为:


54.png


插入变形表达式 Ig ( avr ),并整理得到:


55.png


其中 Cgd ( off )是密勒效应电容,在数据表中定义为Crss。


量化关断栅极电阻


在量化关断电阻时,最坏的情况是当MOSFET漏极处于关断时,外部动作迫使电阻整流器。


在这种情况下,输出节点的 dv / dt ,诱导一股寄生电流穿过 Cgd ,流向 RG ( OFF )和 RDRV ( OFF ),如图22所示。


下面阐述了,当输出 dv / dt 是由伴随MOSFET的导通造成时,如何量化关断电阻,如图22示。


因为这个原因,关断阻抗必须根据最坏的应用情况来量化。下面的等式将MOSFET栅极阈值电压和漏极 dv / dt 关联起来:


56.jpg

图22  电流路径:下桥开关关断,上桥开关导通


1670851215621060.png


重新整理表达式得到:


1670851191841746.png


设计实例


使用飞兆MOSFET FCP20N60和栅极驱动器FAN7382,确定导通和关断栅极电阻。FCP20N60功率MOSFET的参数如下:


1670851178433013.png


导通栅极电阻


1.如果VDD =15 V 时,所需的开关时间是500 ns ,计算平均栅极充电电流:


1670851163849516.png


导通电阻值约为58 Ω。


2.如果 dVout/ dt =1 V / ns (VDD =15 V 时),总栅极电阻如下计算:


1670851145456700.png


导通电阻值约为62 Ω


关断栅极电阻


如果 dVout / dt =1 V / ns ,关断栅极电阻可计算为:


1670851131903151.png


04 考虑功耗


栅极驱动器的功耗


总的功耗包括栅极驱动器功耗和自举二极管功耗。栅极驱动器功耗由静态功耗和动态功耗两部分组成。它与开关频率,上桥和下桥驱动器的输出负载电容,以及电源 VDD 有关。


静态功耗是因为下桥驱动器的电源 VDD 到地的静态电流,以及上桥驱动器的电平转换阶段的漏电流造成的。前者取决于 VS 端的电压,后者仅在上桥功率器件导通时与占空比成正比。


动态功耗定义如下:对于下桥驱动器,动态功耗有两个不同的来源。一是当负载电容通过栅极电阻充电或放电时,进入电容的电能有一半耗散在电阻上。栅极驱动电阻的功耗,栅极驱动器内部的和外部的,以及内部 CMOS 电路的开关功耗。同时,上桥驱动器的动态功耗也包括两个不同的来源。一个是因为电平转换电路,一个是因为上桥电容的充电和放电。这里,可以忽略静态功耗,因为集成电路的总功耗主要是栅极驱动 IC 的动态功耗,可估算为:


63.png


图23表示计算的栅极驱动器功耗与频率和负载电容的关系(VDD=15 V)。此曲线可用于计算栅极驱动器造成的功耗。


64.jpg

图23  极驱动器的总功耗


自举电路的功耗是自举二极管功耗和自举电阻功耗的总和,如果它们存在的话。自举二极管的功耗是对自举电容充电时产生的正向偏置功耗与二极管反向恢复时产生的反向偏置功耗的总和。因为每个事件每个周期发生一次,所以二极管的功耗与开关频率成正比。大电容负载需要更多的电流,对自举电容器重新充电,从而导致更多的功耗。


半桥输入电压(VDC )越高,反向恢复功耗越大。集成电路的总功耗可以估算为:栅极驱动器的功耗与自举二极管的功耗的总和,减去自举电阻的功耗。


如果自举二极管在栅极驱动器内部的话,添加一个与内部自举二极管并联的外部二极管,因为二极管功耗很大。外部二极管必须放置在靠近栅极驱动器的地方,以减少串联寄生电感,并显著降低正向电压降。


封装热阻


电路设计者必须提供:


●估算栅极驱动器封装后的功耗


●最大工作结温TJ . MAX . OPR,例如,如降额至 TJ, MAX =150℃的80%,对于这些驱动器为120℃。


●最高工作引脚焊锡温度 TL,MAX,OPR,大约等于驱动器下最大 PCB 温度,比如100℃。


●最大允许结到引脚的热阻计算为:


65.png


05 一般准则


印刷电路板版图


具有最小寄生电感的版图如下:


●开关之间的走线没有回路或偏差。


●避免互连链路。它会显著增加电感。


●降低封装体距离PCB板的高度,以减少引脚电感效应。


●考虑所有功率开关的配合放置,以减少走线长度。


●去耦电容和栅极电阻的布局和布线,应尽可能靠近栅极驱动集成电路。


●自举二极管应尽可能靠近自举电容。


自举部件


在量化自举阻抗和初次自举充电时的电流时,必须考虑自举电阻(RBOOT)。如果需要电阻和自举二极管串联时,首先确认VB不会低于COM(地),尤其是在启动期间和极限频率和占空比下。


自举电容(CBOOT)使用一个低ESR电容,比如陶瓷电容。VDD 和 COM之间的电容,同时支持下桥驱动器和自举电容的再充电。建议该电容值至少是自举电容的十倍以上。


自举二极管必须使用较低的正向压降,为了快速恢复,开关时间必须尽可能快,如超高速。


66.jpg

1670851080509075.png


自举电路问题的思考


68.jpg

图24


自举电路问题的补救措施


69.jpg

图25


来源:

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    实现会占用电源解决方案总体积的 30%(如图 1 所示)。 图1 3.3kW图腾柱功率因数校正参考设计中的传统单相无源滤波器 有源 滤波器 (AEF) 电路可为新一代电源管理系统实现更紧凑的滤波器解决方案。空间受限型应用可使用有源电源滤波器集成电路......
    EMI 滤波器 (AEF) 电路可为新一代电源管理系统实现更紧凑的滤波器解决方案。空间受限型应用可使用有源电源滤波器集成电路 (IC) 减小磁性元件的尺寸和滤波器的总尺寸。AEF 的其......
    衰减特性。这导致了权衡后的无源滤波器设计采用笨重且昂贵的共模扼流圈,尺寸相当于整个滤波器大小,从而限制了功率密度的提高。而有源 EMI 滤波器 (AEF) 电路可实现紧凑的滤波器解决方案,并通......
    金属封装引脚示意图 五、LM358 内部电路原理图 L M358 内部电路原理图 六、LM358 直流耦合低通 RC 有源滤波器......
    设计有源音调控制电路的教程;音调控制或有源均衡器电路,尤其是基于低音、高音和 MID 控制的均衡器是音频放大器设计中的重要电路。通常,三级有源均衡器滤波器需要三个控制低音、高音和 MID。低音......
    电压源缓冲、电平转换、控制I/O接口、电源控制和监控功能等。 基准电压增益/缓冲 电平转换/驱动 有源滤波器 电源线路监控/控制 电流/电压检测或监控 数据采集 采样保持电路 积分器......
    采用芯片测试的环路滤波器设计;  小数分频频率合成器在测试时必须外接一个环路滤波器电路与压控振荡器才能构成一个完整的锁相环电路。其外围电路中环路滤波器的设计好坏将直接影响到芯片的性能测试。以......
    过以下公式确定截止频率FC1:   除了滤波外,该级还用作放大器,将电流(IA1)作为输入,并在输出端生成一个基于负反馈电阻(R3)的反相电压(VA1):   有源低通滤波器 有源滤波器的电路设计中包含有源......
    电源和信号完整性,以及高电压下的安全性等方面。为了解决这些难题,TI主要围绕低静态电流、低EMI、功率密度、低噪声和高精度以及隔离,这五大技术方向努力。 日前,TI推出了独立式有源电磁干扰 (EMI) 滤波器集成电路......
    电源和信号完整性,以及高电压下的安全性等方面。为了解决这些难题,TI主要围绕低静态电流、低EMI、功率密度、低噪声和高精度以及隔离,这五大技术方向努力。日前,TI推出了独立式有源电磁干扰 (EMI) 滤波器集成电路......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>