学子专区—ADALM2000实验:心跳监测电路

发布时间:2023-07-10  

目标


本实验活动通过旨在获取心跳信息的实际范例,介绍了如何使用放大器链实现增益和滤波。系统的结果提供相关输出,使用Scopy软件工具可显示该输出。


在本实验活动中,学生将学习如何驱动红外LED和光电晶体管,设计并理解低通滤波器的行为,同时探索不同配置情况下的运算放大器功能。


结合前面提到的电子设备,本活动最终将展示如何利用最少的软件和硬件设备设计实际应用。


背景知识


有一种心跳监测设备通过夹在指尖上的电路来实时监测心跳。该设备让光线穿过手指,然后测量被吸收的光有多少,由此便能实现此功能。因为当心脏驱动血液经过手指时,测量值会发生上下波动。实验使用了红外LED和光电晶体管,来使光学心跳监测器正常工作。LED发出的光穿过手指,由光电晶体管进行检测。光电晶体管就像一个可变电阻,根据接收到的光来传导不同大小的电流。


从光电晶体管的集电极可以获取随心跳变化的电压。将获得的小信号用作电路的输入,可以了解心跳监测器的行为。


为了获得相关输出,输入信号要经过多个回路:


前置放大器:来自心跳监测设置的输出信号通过串联电容解耦,并使用负反馈电阻(R4)放大

低通滤波器:去除高频(噪声)的RC滤波器

电压跟随器:缓冲低通滤波器的输出,并以低输出阻抗再现其电压

带低通滤波器的反相放大器:放大电压信号并去除高频(噪声)。


材料


ADALM2000主动学习模块

无焊试验板

跳线

一个OP484精密轨到轨I/O运算放大器

一个100 Ω电阻

一个470 Ω电阻

一个1 kΩ电阻

一个10 kΩ电阻

两个47 kΩ电阻

两个1 µF电容 

一个47 µF电容

一个红外光LED(QED-123)

一个红外晶体管(QSD-123)


 image.png

图1.心跳监测电路


说明


在无焊试验板上构建图1所示的心跳监测电路,该电路在LTspice®中设计。


LTspice仿真使用了LTspice标准模型集中的OP284s。实际电路由ADALP2000模拟部件套件中的四通道OP484FPZ构建,并由ADALM2000模块的±5 V电源供电(总电源电压为10 V)。


红外LED


为了获得不会损坏红外LED的恰当电流,需要串联一个电阻来限制电流。在工作范围内改变电流值,将会改变红外LED发出的信号强度。以下公式通过5 V正电压电源(VP)、串联电阻(R1)和LED上的正向压降(VF),计算出LED的正向电流(IF)的值:


 image.png

光电晶体管


为了在光电晶体管(Q1)接触红外光时获取相关信息,实验设计了一个共发射极放大器电路。当光电晶体管检测到红外范围内的光时,此电路会产生一个从高电平状态转换为低电平状态的输出。输出是通过一个电阻(R2)产生的,该电阻连接在电压源和器件的集电极引脚之间,其值通过实验确定。


前置放大器


来自心跳监测设置的输入信号被馈送到差分放大器电路(C1、A1、R3)。电容会阻碍任何直流成分通过,C1和R3充当高通滤波器,可通过以下公式确定截止频率FC1:


 image.png


除了滤波外,该级还用作放大器,将电流(IA1)作为输入,并在输出端生成一个基于负反馈电阻(R3)的反相电压(VA1):


 image.png


有源低通滤波器


有源滤波器的电路设计中包含有源元件,例如运算放大器。这些器件需从外部电源获取能量,并借此增强或放大输出信号。有源低通滤波器的工作原理和频率响应与简单RC低通滤波器相同,唯一的区别在于其使用运算放大器进行放大和增益控制。


该一阶低通有源滤波器(A2、R4、C2)仅包含一个无源RC滤波器,用于为同相运算放大器的输入提供低频路径。


该滤波器旨在去除与噪声信号相对应的高频成分。考虑到心率不超过每分钟180次(bpm),并且bpm和频率之间存在以下关系:


 image.png


所以高于3 Hz的频率应被去除。RC低通滤波器针对上述频率值设计,公式如下:


 image.png


放大器配置为电压跟随器(缓冲器),其直流增益为1,AV = 1。


这种配置的优势在于,运算放大器的高输入阻抗可防止滤波器输出端承受过大负载,而其低输出阻抗可防止滤波器的截止频率点受到负载阻抗变化的影响。虽然这种配置使滤波器具有良好的稳定性,但无法实现高于1的电压增益,AV = 1。然而,由于滤波器级输出阻抗远低于其输入阻抗,因此功率增益非常高。


带低通滤波器的最终放大器


最后一级配置为具有直流增益控制功能的交流运算放大器积分器。简而言之,该电路旨在对来自剩余不必要频率(即高于心跳最大频率)的信号进行低通滤波(R4、C2),并通过反相放大器放大有用信号,增益(AV)由R6和R5的比率确定:


 image.png


仿真


考虑LTspice中设计的电路,需进行两种类型的仿真:

瞬态:在电路的输入端连接一个波形发生源。配置该源生成幅度为500 µV、频率为2 Hz、偏置500 mV的正弦波。观察输出信号幅度,以图形方式确定电路的总增益(图2)。


image.png

 

图2.输出电压瞬态分析


交流扫描:在电路的输入端连接一个交流源。将该交流源的幅度配置为500 µV。观察选定频域(100 mHz至1 kHz)中的输出信号,以图形方式确定输出信号在哪个频率范围的放大效果更佳(图3)。


image.png

 

图3.输出电压——交流扫描


硬件设置


使用ADALM2000模块中设置为5 V的可变正负电源为电路供电。使用示波器通道1监测VOUT集电极节点的电压。


试验板上实现的电路应该类似于图4所示电路。蓝色LED代表红外LED,灰色LED代表光电晶体管。


程序步骤


将指尖放在红外LED (D1)和光电晶体管(Q1)之间。发射器和接收器应对齐并且指向彼此。


观察第三级运算放大器(A3)输出端的电压波形。输出波形的示例如图5所示。


 image.png

图4.试验板心跳监测电路


 image.png

图5.心跳输出波形


激活Scopy工具示波器功能的监测功能,以读取所获得信号的频率。如需将频率转换为bpm,则可使用实验说明中的公式。


问题:


使用实验说明中提供的值和公式计算以下参数:


通过红外LED的正向电流(使用QED-123数据手册)

高通滤波器的截止频率

第二级低通滤波器的截止频率

第三级低通滤波器的截止频率

第三级放大器的增益


如果修改R5,哪些参数会发生变化?

如果修改R6,哪些参数会发生变化?您可以在学子专区论坛上找到问题答案。


关于作者


Doug Mercer于1977年毕业于伦斯勒理工学院(RPI),获电子工程学士学位。自1977年加入ADI公司以来,他直接或间接贡献了30多款数据转换器产品,并拥有13项专利。他于1995年被任命为ADI研究员。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问,为“主动学习计划”撰稿。2016年,他被任命为RPI ECSE系的驻校工程师。


Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年2月在罗马尼亚克卢日-纳波卡加盟ADI公司。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生。他拥有克卢日-纳波卡科技大学电子与电信工程学士学位。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    设计精确的可穿戴式光学心率监测器;静息心率为您提供了了解健康状况的良好窗口。因此,难怪我们在市场上看到如此多的可穿戴光学心率监测器。这些设备通常使用光体积描记法(PPG),这是......
    以专注于创建独特的应用程序,例如基于此平台的医疗级消费类设备。 MAXREFDES220# 包括: MAX30101心率监测器和脉搏血氧仪,在80.1mm x 5.6mm x 3.3mm 1引脚......
    用于实现多种系统相关功能的处理器、一个电池充电器等多个其它模块。设计系统时,我们需要所有这些组件实现最低功耗。   光学心率监测   让我们以一款可监测心率的手环为例(参见图4)。光学心率监测器的工作原理是光电容积脉搏波(PPG......
    MIL-STD 810F 标准的认证。 凭借其紧凑的外壳、低 2μA 的泄漏电流和所有安全认证,该系列成为各种医疗设备的完美选择,例如: 氧气和心率监测器、脑电波监测器和口腔护理设备。 产品......
    有纹身的苹果手表用户发现显示屏上的数据显示非常微弱,甚至没有。 交叉问题 光电式心率监测器存在由于周期性活动期间的运动而产生的交叉干扰方面的问题,这个问题面临的最大的挑战是这种活动带来持续性的相同重复的动作。这点......
    “无缝嵌入式心率监测器”“健康监测用户界面”等Apple Watch传感器技术。根据苹果公司的说法,AliveCor的产品线并没有在客户中取得成功,而且该公司“在市场上的失败”导致它“利用......
    极胸带测量心脏活动。可以检测到ECG波形,但大多数系统仅测量心率。这些表带不舒服,因此运动和健康行业正在寻找替代品,例如将电极集成到运动衬衫中。AD8232单导联心率监测器前端(如图1所示)专为......
    是为了减少分心或嗜睡驾驶等引起的交通事故而开发的。监管机构对新车越来越多地要求驾驶员监控系统的一些功能。该系统的组件包括: 面向驾驶员的摄像头,用于监控驾驶员的注意力和疲劳程度 安装在方向盘上的心率监测器,类似于健身房机器上的心率监测......
    穿戴式血液分析仪、心率监测仪、睡眠监测器、电子显微镜等提供低功耗无线连接的理想之选。 ......
    首次超越千亿元;微软可穿戴新专利技术将取代传统的光学心率监测传感器;花旗预计2035年VR市场将逾万亿美元;华为Mate9现身 双版本是否有惊喜?;红米4备货充足,等待双十一。   早报时间   | 半导......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>