ADALM2000实验:可调外部触发电路

发布时间:2023-05-25  

目标


本实验活动的目标是研究一种将模拟信号连接到ADALM2000模块的数字式外部触发信号输入的电路。


背景知识


ADALM2000示波器模块较为常见的触发方式是通过其模拟输入通道中的一个触发。当选择某个通道作为触发源时,该模块将会显示出稳定的波形,波形的水平时间刻度以选定通道为基准(对齐零时间点)有时可能需使用被测电路中的某个特定信号来触发显示,以便将该信号的零时间点作为参考点。ADALM2000硬件提供两个外部数字输入/输出,即T1和T0,可被选作触发输入。使用这些数字输入时,显示的波形将与所施加信号的上升沿对齐,即将其设置为零时间点。然而这些数字输入的输入电压范围应该在0 V到5 V之间,并且具有固定的阈值电压。要将这些外部触发输入与模拟输入信号(介于-5 V和+5 V之间)一起使用,需要借助一个电压比较器电路以及可调电压源,来设置触发电压电平。


材料


u ADALM2000主动学习模块

u 无焊试验板

u 跳线

u 一个AD8561 比较器(或用AD790替代,引脚排列略有不同)

u 一个74HC04六路CMOS逆变器(或CD4007,见附录)

u 三个1 kΩ电阻

u 一个1 MΩ电阻

u 一个10 kΩ电位计

u 一个0.1 μF电容

u 一个0.0047 μF电容


说明


在无焊试验板上构建图1所示的电路。AD8561模拟比较器具有同相(正端)和反相(负端)输出。第一个反相器的输入可以交替连接到引脚7输出(上升沿触发)或引脚8输出(下降沿触发)。从将其连接到引脚7开始。建议使用74HC04六通道反相器,也可以用CD4069六通道反相器代替,或者使用CD4007晶体管阵列构建两个反相器(参见附录)。


AD8561的带宽非常高,会对输入信号中可能存在的任何高频噪声作出响应。如果输入信号接近阈值电压(VTH),其输出将会非常快速地来回切换多次。此噪声会导致屏幕上显示来回跳动或起伏较大的波形,看起来不太稳定。利用电阻R5和电容C2形成一个低通滤波器,并插在两个反相器级之间,可以减少这些非常快速的开关尖峰。该滤波器的时间常数将根据用作外部触发信号的信号性质进行调整。


 image.png

图1.模拟触发电路


硬件设置


波形发生器AWG1应配置为三角波,峰峰值幅度为8 V,偏置为0 V,频率为5 kHz。设置示波器的水平和垂直刻度,以至少显示输入三角波形的一个完整周期。确保在反复检查电路连接之后,再打开电源


 image.png

图2.模拟触发试验板电路


程序步骤


首先将示波器触发源设置为通道1,上升沿触发,电平设置为0 V。此时通道1上三角波的上升沿中心应该位于水平轴的零时间点上。根据电位器R3的设置,通道2上第二反相器的数字输出的上升沿应在水平轴上以不同的时间出现。将R3从其范围的一端调整到另一端,观察通道2脉冲的上升沿相对于三角波电压(垂直轴)的时间点变化情况。


 image.png

图3.不同电位器值对应的示波器通道1上升沿触发信号的示波器截图


现在将示波器触发源切换到外部1(T1输入),重复R3从其范围的一端调整到另一端的操作。沿着上升沿的任何位置,都应该可以对齐零时间点。


 image.png

图4.不同电位器值对应的示波器外部触发信号上升沿的示波器截图


现在将第一个反相器的输入移至AD8561的引脚8。现在零时间点应与输入三角波的下降沿对齐。再次重复R3的扫描,确认沿着下降沿的任何位置都可以对齐零时间点。


问题:


1. 除了RC滤波器之外,还有哪些方法可以用来消除比较器的噪声抖动?


您可以在学子专区论坛上找到问题答案。


附录:使用CD4007晶体管阵列构建反相器


图5显示了CD4007的原理图和引脚排列。


 image.png

图5.CD4007 CMOS晶体管阵列引脚排列


从一个CD4007封装可以构建多达三个单独的反相器。图6所示为最简单的配置,即将引脚8和13连接在一起作为反相器输出。引脚6将作为输入端。务必将引脚 14 VDD连接到电源,将引脚 7 VSS连接到地。


 image.png

图6.反相器电路


第二个反相器是通过将引脚2连接到VDD且将引脚4连接到VSS来构建的;引脚1和5连接在一起作为输出,引脚3作为输入。第三个反相器是通过将引脚11连接到VDD且将引脚9连接到VSS来构建的;引脚12为输出,引脚10为输入。


关于作者


Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年2月在罗马尼亚克卢日-纳波卡加盟ADI公司。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生,拥有克卢日-纳波卡科技大学电子与电信工程学士学位。


Doug Mercer于1977年毕业于伦斯勒理工学院(RPI),获电子工程学士学位。自1977年加入ADI公司以来,他直接或间接贡献了30多款数据转换器产品,并拥有13项专利。他于1995年被任命为ADI研究员。2009年,他从全职工作转型,并继续以名誉研究员身份担任ADI顾问,为“主动学习计划”撰稿。2016年,他被任命为RPI ECSE系的驻校工程师。



文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    浅析基本放大电路!(2024-10-05 18:03:02)
    1、基本共射放大电路电路的输入回路与输出回路以发射极为公共端,故称之为共射放大电路。在电子电路中,称公共端为“地......
    输出电压低,而共集电极放大电路不能放大电压,所以我们分为两级放大。第一级使用共射极放大电路放大电压,第二级使用共集电极放大电路放大功率,供电电压选择12V,喇叭选择8Ω/5W。 首先共射极放大电路......
    共射极放大电路反馈类型和作用解析;一、反馈类型是什么共射放大电路的反馈类型通常是电压负反馈(Voltage Negative Feedback)。在共射放大电路中,将输......
    经验,通常取Rb/Rc=(2-10) 二、放大器的三种电路形式 放大器是一种三端电路,其中必有一个端是输入和输出的共同“地”端,如果这个共“地”端接于发射极的,称为共射电路,接于集电极的,称为共集电路......
    结性三极管,场效应三级管等 二、放大电路的基本原理和分析方法: 1.原理 单管共发射极放大电路;双极性三极管的三组态---共射 共基 共集;场效应管放大电路......
    电感负载A类功率放大器简介;了解电感负载共射极级如何用作。本系列的前一篇文章讨论了使用电阻性负载共发射极电路作为(PA)的挑战和局限性。在最后一节中,我们了解到,通过使用大型电感器作为共发射极......
    :时间常数,电压变化方程,电阻和电容参数的选择。 五、 共射极放大电路......
    说照手册设定一般是不会有问题的。    推挽式电子管放大电路的信号放大通路,是由前级分相,取得两个互为反相的对称信号电压分别进入两只电子管的栅极,调制阴极发射的电子流,在阳樱得到放大了的信号电压、进入变压器合成,并通......
    一项较为重要。 共射的基本放大电路实......
    有两点缺陷,  一个就是当放大信号比较大的时候,单管放大电路会出现比较大的失真。 第二个就是昨天给出的电路图中存在一个小的BUG, 当时这个R1忘记在电路图中给绘制出来, 但在后面的仿真电路中是标明的。 01 硅麦音频放大......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>