一、USART简介
通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换。USART利用分数波特率发生器提供宽范围的波特率选择。(文章下方有USART串口视频资料)
STM32 的串口资源相当丰富的,功能也相当强劲。STM32F103ZET6 最多可提供 5 路串口,有分数波特率发生器,支持同步单向通信和半双工单线通信,支持LIN(局部互连网),智能卡协议和IrDA(红外数据组织)SIR ENDEC规范,以及调制解调器(CTS/RTS)操作。它还允许多处理器通信。使用多缓冲器配置的DMA方式,可以实现高速数据通信。
二、USART功能概述
接口通过三个引脚与其他设备连接在一起。任何USART双向通信至少需要两个脚:接收数据输入(RX)和发送数据输出(TX)。 RX:接收数据串行输。通过过采样技术来区别数据和噪音,从而恢复数据。 TX:发送数据输出。当发送器被禁止时,输出引脚恢复到它的I/O端口配置。当发送器被激活,并且不发送数据时,TX引脚处于高电平。在单线和智能卡模式里,此I/O口被同时用于数据的发送和接收。
串口外设主要由三个部分组成,分别是波特率的控制部分、收发控制部分及数据存储转移部分。
1、波特率控制
波特率,即每秒传输的二进制位数,用 b/s (bps)表示,通过对时钟的控制可以改变波特率。在配置波特率时,我们向波特比率寄存器 USART_BRR 写入参数,修改了串口时钟的分频值 USARTDIV。USART_BRR 寄存器包括两部分,分别是 DIV_Mantissa(USARTDIV 的整数部分)和 DIVFraction(USARTDIV的小数)部分,最终,计算公式为:
USARTDIV=DIV_Mantissa+(DIVFraction/16)。
2、分数波特率的产生
接收器和发送器的波特率在USARTDIV的整数和小数寄存器中的值应设置成相同。 Tx / Rx 波特率 =fCK/(16*USARTDIV)
这里的fCK是给外设的时钟(PCLK1用于USART2、3、4、5,PCLK2用于USART1) USARTDIV是一个无符号的定点数。这12位的值设置在USART_BRR寄存器。
注: 在写入USART_BRR之后,波特率计数器会被波特率寄存器的新值替换。因此,不要在通信进行中改变波特率寄存器的数值。
USARTDIV 是对串口外设的时钟源进行分频的,对于 USART1,由于它是挂载在 APB2 总线上的,所以它的时钟源为 fPCLK2;而 USART2、3 挂载在APB1 上,时钟源则为 fPCLK1,串口的时钟源经过 USARTDIV 分频后分别输出作为发送器时钟及接收器时钟,控制发送和接收的时序。
3、收发控制
围绕着发送器和接收器控制部分,有好多个寄存器:CR1、CR2、CR3、SR,即 USART 的三个控制寄存器(Control Register)及一个状态寄存器(Status Register)。通过向寄存器写入各种控制参数,来控制发送和接收,如奇偶校验位,停止位等,还包括对 USART 中断的控制;串口的状态在任何时候都可以从状态寄存器中查询得到。具体的控制和状态检查,我们都是使用库函数来实现的,在此就不具体分析这些寄存器位了。
4、数据存储转移部分
收发控制器根据我们的寄存器配置,对数据存储转移部分的移位寄存器进行控制。
当我们需要发送数据时,内核或 DMA 外设(一种数据传输方式,在下一章介绍)把数据从内存(变量)写入到发送数据寄存器 TDR 后,发送控制器将适时地自动把数据从 TDR 加载到发送移位寄存器,然后通过串口线 Tx,把数据一位一位地发送出去,在数据从 TDR 转移到移位寄存器时,会产生发送寄存器TDR 已空事件 TXE,当数据从移位寄存器全部发送出去时,会产生数据发送完成事件 TC,这些事件可以在状态寄存器中查询到。
而接收数据则是一个逆过程,数据从串口线 Rx 一位一位地输入到接收移位寄存器,然后自动地转移到接收数据寄存器 RDR,最后用内核指令或 DMA读取到内存(变量)中。
三、串口设置
对于复用功能的 IO,我们首先要使能 GPIO 时钟,然后使能复用功能时钟,同时要把 GPIO 模式设置为复用功能对应的模式,串口参数的初始化设置,包括波特率,停止位等等参数。在设置完成后就是使能串口。同时,如果开启了串口的中断,当然要初始化 NVIC 设置中断优先级别,最后编写中断服务函数。
串口设置的一般步骤可以总结为如下几个步骤:
1) 串口时钟使能,GPIO 时钟使能
2) 串口复位
3) GPIO 端口模式设置
4) 串口参数初始化
5) 开启中断并且初始化 NVIC(如果开启中断才需要这个步骤)
6) 使能串口
7) 编写中断处理函数
与串口基本配置直接相关的几个固件库函数。这些函数和定义主要分布在 stm32f10x_usart.h 和 stm32f10x_usart.c 文件中。
1、串口时钟使能。
串口是挂载在 APB2 下面的外设,所以使能函数为: RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1);
2、串口复位。
当外设出现异常的时候可以通过复位设置,实现该外设的复位,然后重新配置这个外设达到让其重新工作的目的。一般在系统刚开始配置外设的时候,都会先执行复位该外设的操作。复位的是在函数 USART_DeInit()中完成: void USART_DeInit(USART_TypeDef* USARTx);//串口复位
比如要复位串口 1,方法为: USART_DeInit(USART1); //复位串口 1
3、串口参数初始化。
串口初始化是通过 USART_Init()函数实现的, void USART_Init(USART_TypeDef* USARTx, USART_InitTypeDef* USART_InitStruct);
这个函数的第一个入口参数是指定初始化的串口标号,这里选择 USART1。第二个入口参数是一个 USART_InitTypeDef 类型的结构体指针,这个结构体指针的成员变量用来设置串口的一些参数。一般的实现格式为:
1 USART_InitStructure.USART_BaudRate = bound; //一般设置为 9600; 2 USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为 8 位数据格式 3 USART_InitStructure.USART_StopBits = USART_StopBits_1; //一个停止位 4 USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验位 5 USART_InitStructure.USART_HardwareFlowControl 6 = USART_HardwareFlowControl_None; //无硬件数据流控制 7 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 8 USART_Init(USART1, &USART_InitStructure); //初始化串口
从上面的初始化格式可以看出初始化需要设置的参数为:波特率,字长,停止位,奇偶校验位,硬件数据流控制,模式(收,发)。我们可以根据需要设置这些参数。
4、数据发送与接收。
STM32 的发送与接收是通过数据寄存器 USART_DR 来实现的,这是一个双寄存器,包含了 TDR 和 RDR。当向该寄存器写数据的时候,串口就会自动发送,当收到数据的时候,也是存在该寄存器内。
STM32 库函数操作 USART_DR 寄存器发送数据的函数是:
void USART_SendData(USART_TypeDef* USARTx, uint16_t Data);
通过该函数向串口寄存器 USART_DR 写入一个数据。
STM32 库函数操作 USART_DR 寄存器读取串口接收到的数据的函数是:
uint16_t USART_ReceiveData(USART_TypeDef* USARTx);
通过该函数可以读取串口接受到的数据。
5、串口状态。
串口的状态可以通过状态寄存器 USART_SR 读取。 USART_SR 的各位描述如图 1 所示:
图1 USART_SR寄存器各位描述
关注一下两个位,第 5、6 位 RXNE 和 TC。
RXNE(读数据寄存器非空),当该位被置 1 的时候,就是提示已经有数据被接收到了,并且可以读出来了。这时候我们要做的就是尽快去读取 USART_DR,通过读 USART_DR 可以将该位清零,也可以向该位写 0,直接清除。
TC (发送完成),当该位被置位的时候,表示 USART_DR 内的数据已经被发送完成了。如果设置了这个位的中断,则会产生中断。该位也有两种清零方式:1)读 USART_SR,写USART_DR。2)直接向该位写 0。
在我们固件库函数里面,读取串口状态的函数是:
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
这个函数的第二个入口参数非常关键,它是标示要查看串口的哪种状态,比如上面讲解的RXNE(读数据寄存器非空)以及 TC(发送完成)。例如要判断读寄存器是否非空(RXNE),操作库函数的方法是:
USART_GetFlagStatus(USART1, USART_FLAG_RXNE);
要判断发送是否成(T完C),操作库函数的方法是:
USART_GetFlagStatus(USART1, USART_FLAG_TC);
以上这些标识号在 MDK 里面是通过宏定义定义的:
1 #define USART_IT_PE ((uint16_t)0x0028)
2 #define USART_IT_TXE ((uint16_t)0x0727)
3 #define USART_IT_TC ((uint16_t)0x0626)
4 #define USART_IT_RXNE ((uint16_t)0x0525)
5 #define USART_IT_IDLE ((uint16_t)0x0424)
6 #define USART_IT_LBD ((uint16_t)0x0846)
7 #define USART_IT_CTS ((uint16_t)0x096A)
8 #define USART_IT_ERR ((uint16_t)0x0060)
9 #define USART_IT_ORE ((uint16_t)0x0360)
10 #define USART_IT_NE ((uint16_t)0x0260)
11 #define USART_IT_FE ((uint16_t)0x0160)
图1 USART_SR寄存器各位描述
关注一下两个位,第 5、6 位 RXNE 和 TC。
RXNE(读数据寄存器非空),当该位被置 1 的时候,就是提示已经有数据被接收到了,并且可以读出来了。这时候我们要做的就是尽快去读取 USART_DR,通过读 USART_DR 可以将该位清零,也可以向该位写 0,直接清除。
TC (发送完成),当该位被置位的时候,表示 USART_DR 内的数据已经被发送完成了。如果设置了这个位的中断,则会产生中断。该位也有两种清零方式:1)读 USART_SR,写USART_DR。2)直接向该位写 0。
在我们固件库函数里面,读取串口状态的函数是:
FlagStatus USART_GetFlagStatus(USART_TypeDef* USARTx, uint16_t USART_FLAG);
这个函数的第二个入口参数非常关键,它是标示要查看串口的哪种状态,比如上面讲解的RXNE(读数据寄存器非空)以及 TC(发送完成)。例如要判断读寄存器是否非空(RXNE),操作库函数的方法是:
USART_GetFlagStatus(USART1, USART_FLAG_RXNE);
要判断发送是否成(T完C),操作库函数的方法是:
USART_GetFlagStatus(USART1, USART_FLAG_TC);
以上这些标识号在 MDK 里面是通过宏定义定义的:
1 //初始化 GPIO 和 串口 1
2 //bound:波特率
3 void uart_init(u32 bound)
4 {
5 GPIO_InitTypeDef GPIO_InitStructure;
6 USART_InitTypeDef USART_InitStructure;
7 NVIC_InitTypeDef NVIC_InitStructure;
8 //①串口时钟使能,GPIO 时钟使能,复用时钟使能
9 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1|
10 RCC_APB2Periph_GPIOA, ENABLE); //使能 USART1,GPIOA 时钟
11 //②串口复位
12 USART_DeInit(USART1); //复位串口 1
13 //③GPIO 端口模式设置
14 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; //ISART1_TX PA.9
15 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
16 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //复用推挽输出
17 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化 GPIOA.9
18 GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; //USART1_RX PA.10
19 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING; //浮空输入
20 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化 GPIOA.10
21 //④串口参数初始化
22 USART_InitStructure.USART_BaudRate = bound; //波特率设置
23 USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长为 8 位
24 USART_InitStructure.USART_StopBits = USART_StopBits_1; //一个停止位
25 USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验位
26 USART_InitStructure.USART_HardwareFlowControl
27 = USART_HardwareFlowControl_None; //无硬件数据流控制
28 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;//收发模式
29 USART_Init(USART1, &USART_InitStructure); //初始化串口
30 #if EN_USART1_RX //如果使能了接收
31 //⑤初始化 NVIC
32 NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
33 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3 ; //抢占优先级 3
34 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //子优先级 3
35 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ 通道使能
36 NVIC_Init(&NVIC_InitStructure); //中断优先级初始化
37 //⑤开启中断
38 USART_ITConfig(USART1, USART_IT_RXNE, ENABLE); //开启中断
39 #endif
40 //⑥使能串口
41 USART_Cmd(USART1, ENABLE); //使能串口
42 }
从该代码可以看出,其初始化串口的过程,和我们前面介绍的一致。我们用标号①~⑥标示了顺序:
① 串口时钟使能,GPIO 时钟使能
② 串口复位
③ GPIO 端口模式设置
④ 串口参数初始化
⑤ 初始化 NVIC 并且开启中断
⑥ 使能串口
五、
1、配置全双工的串口 1
TX(PA9)管脚需要配置为推挽复用输出;
RX(PA10)管脚配置为浮空输入或者带上拉输入。
模式配置参考下面表1:
表1 串口 GPIO 模式配置表
2、需要注意一点,如果使用到了串口的中断接收,必须在 usart.h 里面设置EN_USART1_RX 为 1(默认设置就是 1 的) 。该函数才会配置中断使能,以及开启串口 1 的NVIC 中断。这里把串口 1 中断放在组 2,优先级设置为组 2 里面的最低。
接下来还要编写中断服务函数。串口 1 的中断服务函数 USART1_IRQHandler 。
3、重点看下mian()函数中的以下两句:
USART_SendData(USART1, USART_RX_BUF[t]); //向串口 1 发送数据
while(USART_GetFlagStatus(USART1,USART_FLAG_TC)!=SET);
第一句,其实就是发送一个字节到串口。第二句呢,就是我们在我们发送一个数据到串口之后,要检测这个数据是否已经被发送完成了。 USART_FLAG_TC 是宏定义的数据发送完成标识符。