基于STM32Cubemx HAL 库实现 DMA 驱动 GPIO 高速翻转

发布时间:2024-09-23  

说明:本文主要内容是从简单介绍有关STM32的DMAMUX模块-电子发烧友网 (elecfans.com)这篇文章摘录。我是小白,在索引HAL DMA GPIO 翻转时,没有找到本文,而在所有DMAMUX才索引到此文。为了方便后续小白能够及时找到此文。我重新做了编译。并做了相关程序的验证。对相关数据做了说明。感谢本文应用的3片文章的作者!


目前STM32家族中的很多系列,比如STM32G0/STM32G4/STM32L4+/STM32H7等都内置了DMAMUX模块。有了它一方面使得DMA请求与DMA控制器之间的映射关系更为灵活方便,另一方面也大大拓展了DMA请求事件,不再局限于外设事件,比方基于GPIO的外部中断事件、或者DMA事件本身来触发DMA传输。


关于DMAMUX的基本结构及功能原理,这里就不说了,这里重点介绍基于STM32G4芯片,使用GPIO的外部中断事件触发DMA传输,通过DMA将内存数据传输到GPIO端口的实现过程,包括基于CubeMx的配置、关键代码及注意点。


本演示例程基于STM32G4系列的Nucleo板进行,按键【PC.13】用来触发中断,该中断事件被配置DMA请求源。板上有个LED灯与PA.5相连。例程中通过DMA传输来修改GPIOA输出寄存器的内容来改变亮灯情况。


要完成的任务很简单,按键产生外部中断事件,外部中断事件与DMAMUX的DMA请求生成器相连,进而产生DMA请求,最后触发相应的DMA控制器完成数据传输。下面就直接进入配置过程。


先通过CubeMx神器做基本的初始化配置【RCC配置就省略不提了】。

注意别忘了使能PC13脚所对应的NVIC控制器配置,即下图所示配置。

798284d0-fc1f-11eb-9bcf-12bb97331649.png

然后,对DMA进行配置。配置也比较简单,见下图。注意DMA请求源并非常规的外设事件,而是DMA请求发生器相关通道,关于它的配置在图中下方的蓝色方框那里。

79a7bcd2-fc1f-11eb-9bcf-12bb97331649.png

EXTI13事件作为DMAMUX的输入请求信号,每次中断事件产生一个DMA请求,请求信号与DMA1的Channel1相连。为了便于演示,我这里将DMA传输配置成了循环模式。


基于上面配置生成初始化代码,然后添加用户代码。基于HAL库的关键用户参考代码如下:

DMA_HandleTypeDef hdma_dma_generator0;

uint16_t DataSource[]={0x5555,0xaaaa,0x5a5a,0xa5a5};

int main(void)

{

HAL_Init();

SystemClock_Config();

MX_GPIO_Init();

MX_DMA_Init();

/* USER CODE BEGIN 2 */

HAL_DMAEx_EnableMuxRequestGenerator(&hdma_dma_generator0);

HAL_DMA_Start(&hdma_dma_generator0 , (uint32_t)&DataSource,

(uint32_t)&(GPIOA-》ODR),4 );

/* USER CODE END 2 */

while (1)

{

}

}

顺便提醒下,上面红色代码行可能是有些人容易忽视的地方,至少目前库版本需要手动添加这句。

最后,简单验证下。看看按键时是否发生GPIOA输出的数据变化及灯亮暗。

验证过程是没啥问题的,跟预期效果一致。这里特意分享整个实现过程以供有需要的工程师参考。有关STM32的DMAMUX模块的简单介绍可以阅读下面的文章《《STM32芯片中的DMAMUX是干啥用的》》。OK,下次再聊。

我使用TIM1-CH1的输出作为触发链接到EXTI引脚上面周期触发DMA搬运。474主频160MHz,搬运速度为20MHz。而TIM1-CH1的触发频率可以达到80Hz。下图从“AN2548_STM32F。。。。。”文档摘录,即一个DMA搬运周期约6个系统时钟。我现在是反过来从内存搬运到外设,算下来是8个时钟。基本正常。如果直接用CPU搬运则可以达到160MHz(CPU搬运时间为1个系统主频)。但是由于GPIO输出达不到160MHz因此输出波形异常。把主频降低到120MH在,输出正常,可以达到120MHz刷新。

pYYBAGR5pS6AVWbnAAGJ5W4rtws887.png


z这篇文章介绍的方法刷新速度与上面的速度相同(已经测试)“ STM32 | 基于 HAL 库实现 DMA 驱动 GPIO 高速翻转_stm32 dma gpio_羽墨志的博客-CSDN博客”但是这个方法没办法周期触发同步。

在STM32G474 中要使用M to M搬运,需要使用下面2条语句:

HAL_DMAEx_EnableMuxRequestGenerator(&hdma_memtomemX_channelX); ///上面这篇文章没有这句,无法在474内得到期望结果。

HAL_DMA_Start(&hdma_memtomem_dma1_channel1, (uint32_t)(dma_buff), (uint32_t)(&GPIOB->ODR), sizeof(dma_buff)/sizeof(dma_buff[0]));


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>