一种新的软件时序偏差校准方法加速双脉冲测试进程

发布时间:2023-11-03  

_____

本文引用地址:

双脉冲测试中一个重要目标是,准确测量能量损耗。在示波器中进行准确的功率、能量测试,关键的一步是在电压探头和电流探头之间进行校准,消除时序偏差。

双脉冲测试软件(WBG-DPT)在4系、5系和6系示波器上均可使用,该软件包括一种新的专为双脉冲测试设计的消除时序偏差(deskew)的校准技术。这种新的方法与传统方法大有不同,测试速度显著加快,缩短了测试时间。

1698994091685500.png

该技术适用于使用场效应晶体管或 IGBT 的功率转换器。在本篇文章中,我们将使用 FET 术语,来使得描述简单明了。

为什么要消除时序偏差(deskew)?

在设计任意一种功率变换器时,都必须尽量减少开关过程中的能量损耗。这种能量损耗可以使用示波器进行测量。一般方法是将同一时刻的电压和电流采样相乘,生成功率波形。

p(t) = v(t)*i(t)

由于功率波形表示随时间变化的能量消耗,因此可以通过对功率波形进行积分来确定能量:

E = ∫p(t)dt

要准确测量能量损耗,电流和电压波形的转换应在时间上保持一致。因此,为了准确进行能量损耗测量,设计者必须矫正测试夹具和探头造成的延迟。

一般来讲,在测试装置上开始任何测量之前都要计算探头之间的偏差。对于低电压应用,可以使用函数发生器和时序偏差校准夹具(deskew 夹具)(Tektronix P/N 067-1686-03)进行校准。但是,这种方法对于高电压和大电流应用而言,并非最佳选择。

为了匹配更高功率下低压漏-源极电压(VDS)和漏极电流(ID)的测量,传统技术需要重新布线测试装置。这要求移除负载电感,并用电阻取而代之。接下来进行测量,需要匹配 VDS 和 ID 测量值。这个过程可能需要一个小时或更长时间。

1698994112556358.png

一种新的时序偏差校准(deskew)方法

泰克 WBG-DPT 解决方案是业内首创的基于软件的时序偏差校准(deskew)技术,无需重新布线,只需在进行双脉冲测量后即可执行。在新方法中,采集漏极电流 (ID) 用作参考波形。在导通期间,利用测试电路的参数模型计算出低压侧 VDS 对齐波形,其计算后的波形参考 ID 波形,相对于 ID 没有时序偏移。消除时序偏差的算法确定计算出的 VDS 波形与测量出的 VDS 波形之间的时序偏差。然后将deskew校准的数据修正到 VDS 测量通道。

时序偏差校准过程

如上所述,时序偏差校准可在测量后进行。在开始双脉冲测试时,无需担心 VDS 和 ID 之间的偏差,随后选择deskew设置并提供以下参数:

●   探头阻抗 - 在本文中假定为电流检测电阻(CVR)或分流电阻

●   有效"回路"电感

●   偏置电压(低压侧 FET 关断时两端的平均 VDS)

●   差分阶数(模型用于平滑的滤波器阶数)

image.png

图3 用于建立VDS_low对齐波形的等效电路。该电路假定使用一个电流观察电阻来测量ID

在deskew菜单中输入的参数用于构建 VDS 对应波形。波形使用基尔霍夫电压定律建立:

image.png

其中

VDD - VDS_high 表示电源轨电压和高压端场效应晶体管FET上的压降。需要注意,在开启期间,由于 VDD 是固定的,而 VDS_high是高压端场效应晶体管FET本体二极管上的电压,所以这个量是恒定的。

●   Rshunt是分流电阻。

●   ID 是根据 Rshunt 上的压降测得的漏极电流。

●   dID /dt 是测得的漏极电流变化率。

●   Leff 是整个电源回路的有效电感。

如上所述,在开启期间,VDD - VDS_high 实际上是恒定的。Rshunt和Leff 也是恒定的。 这意味着模拟的 VDS_low 走线波形是 ID的函数。

配置完参数后,用户按下 WBG 的deskew按钮。系统将根据指定的参数和漏极电流生成 VDS 的数学模型。 该波形将显示在屏幕上。

1698994167465362.png

图4 根据ID计算出的 VDS 对齐波形与测量的VDS波形进行比较。偏移是对齐波形和测量波形之间的时间差。计算出偏斜后,就可以从ID 波形中去除偏斜

如上图所示,有效电感Leff考虑到了整个环路的 "叠加 "。因此,Leff 通常是未知的,而这个参数需要反复调整。简单地将纠偏过程反复运行,并对 Leff 进行调整,直到计算出的对齐波形和测量出的 VDS波形具有相同的形状。如果计算出的 VDS对齐波形与测量的 VDS波形在形状上存在差异,可以调整参数并再次运行校准时间偏差。

一旦参数设置准确,对齐波形和测量波形将具有相同的形状,系统就能确定并纠正偏斜。偏斜值显示在Deskew设置中,并自动应用于连接 VDS信号的通道。

这一新流程可以准确地计算偏斜值,并将时序偏差校准时间从一小时或更长时间缩短到 5 至 10 分钟。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    度)。 传感器校准是智能车辆稳健性能的基础。传统且常用的标定方法是通过对智驾车辆在工厂下线电检阶段进行的。一旦完成标定和校准,其内外参数在交付至客户手里后将不会自动优化更新。 众所周知,整个......
    圈灵敏度、扫频灵敏度进行误差校准,使频谱仪频率调谐范围正常。 校准方法 用频率/幅度校准电缆,将校准信号(CAL OUTPUT)接入频谱仪的信号输入端。按【CAL】〔CALFREQ〕,频谱仪进入频率校准......
    一体化温度变送器现场校准;1、现场校准方法确认  一体化温度变送器的感温元件为工业铂电阻,在-80°C~300°C环境下进行现场校准阶段的方法......
    示波器探头衰减倍率的校准方法;       示波器探头是示波器测量过程中的重要部件。选择一个功能适当且性能良好的探头,对传输波形的真实与可靠起到至关重要的作用。从功能上讲,探头......
    阻尼振荡波模拟器的校准方法;阻尼振荡波发生器用于评估家用、商业和工业用途电气和电子设备的阻尼振荡波抗扰度提供一个理想、规范的依据。仪器可以模拟高压和中压变电站中的电力电缆、控制......
    查找表存储在程序或数据闪存中很安全,因为它占用空间很小而且永远不需要更改。 此外,将数据查找表用于存储传感器数据校准,也是一种行之有效的方法。像内置ADC这样的微控制器模拟外设可能需要定期校准方法与模拟传感器校准......
    值的描述,如图 3 所示。 图3. 温度传感器校准值重要参数 这个表格有一个非常重要的参数,就是 ADC1 的参考电压,它是 3.0V,而 NUCLEO-U575ZI-Q 板子的 ADC 参考电压为 3.3V......
    and longevity)。 PID 控制参数(PID Control Parameters): 调整比例-正积分-反演 (PID) 控制参数,以微调电机对不同驱动条件的响应。 传感器校准(Sensor......
    若具备标准气体,可以自行进行传感器校准。 单击“校准”按键即可进入“露点校准”界面,“露点校准”界面如图8所示。 图8 露点校准 点击左右箭头按键即可输入“量程”和“零点”数据,点击“确认”将新的校准......
    调节:PID控制器是电机控制系统中最常用的控制器,通过调节PID参数来控制电机的运行。(4) 负载适应:通过对负载的实时监测和适应,调整电机的控制策略,实现高效率、高精度的运行。(5) 传感器校准传感器......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>