工业多通道数据采集系统中Σ-Δ型ADC的信号调理

发布时间:2023-10-23  

许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。 如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040K等ADC的高动态范围、同时采样以及多通道优势。 本文介绍了MAX11040K的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。


高速、Σ-Δ架构的优势

图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。 为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。


引言

许多高端工业应用中,高性能数据采集系统(DAS)与各种传感器之间需要提供适当的接口电路。 如果信号接口要求提供多通道、高精度的幅度和相位信息,这些工业应用可以充分利用MAX11040K等ADC的高动态范围、同时采样以及多通道优势。 本文介绍了MAX11040K的Σ-Δ架构,以及如何合理选择设计架构和外部元件,以获得最佳的系统性能。


高速、Σ-Δ架构的优势

图1所示为高端三相电力线监视/测量系统,这类工业应用需要以高达117dB的动态范围、64ksps采样速率精确地进行多通道同时采集数据。 为了获得最高系统精度,必须正确处理来自传感器(例如,图1中的CT、PT变压器)的信号,以满足ADC输入量程的要求,从而保证DAS的性能指标满足不同国家相关标准的要求。

wKgZomSGwcmAUOKpAAB5S0JNPB4991.gif

图1. 基于MAX11040K的DAS在电网监控中的应用

从图1可以看到,采用两片MAX11040K ADC可以同时测量交流电的三相及零相的电压和电流。 该ADC基于Σ-Δ架构,利用过采样/平均处理得到较高的分辨率。 每个ADC通道利用其专有的电容开关Σ-Δ调制器进行模/数转换。 该调制器将输入信号转换成低分辨率的数字信号,它的平均值代表输入信号的量化信息,时钟频率为24.576MHz时对应的采样率为3.072Msps。 数据流被送入内部数字滤波器处理,消除高频噪声。 处理完成后可以得到高达24位的分辨率。


MAX11040K为4通道同时采样ADC,其输出数据是处理后的平均值,这些数值不能像逐次逼近(SAR) ADC的输出那样被看作是采样“瞬间”的数值¹,²。


MAX11040K能够为设计人员提供SAR架构所不具备的诸多功能和特性,包括:1ksps采样率下高达117dB的动态范围; 积分非线性和微分非线性(INL、DNL)也远远优于SAR ADC; 独特的采样相位(采样点)调节能够从内部补偿外部电路(驱动器、变压器、输入滤波器等)引入的相位偏移。


另外,MAX11040K集成一个数字低通滤波器,处理每个调制器产生的数据流,得到无噪声、高分辨率的数据输出。 该低通滤波器具有复杂的频率响应函数,具体取决于可编程输出数据率。 输入端的阻/容(RC)滤波器结合MAX11040K的数字低通滤波器,大大降低了MAX11040K输入信号通道抗混叠滤波器的设计难度,甚至可以完全省去抗混叠滤波器。 表1列举了MAX11040K的部分特性,关于MAX11040K数字低通滤波器或表中列出的特性指标的详细信息,请参考器件数据资料。


部分 渠道 输入范围(VP_P) 分辨率(位) 速度(KSPS,最大值) SINAD (1KSPS) (dB) 输入阻抗
MAX11040K 4 ±2.2 24 64 117 高,(约130kΩ)


电力线应用对ADC性能的要求

电力线监控应用中,CT (电流)互感器和PT (电压)互感器输出范围的典型值为:±10V或±5V峰峰值(VP-P)。 而MAX11040K的输入量程为±2.2VP-P,低于CT和PT互感器的典型输出。 不过,可以利用一个简单的低成本方案将±5V或±10V互感器输出调整到MAX11040K较低的输入量程以内,电路如图2所示。


连接到通道1的电路代表一个单端设计,这种配置下,变压器的一端接地,通过一个简单的电阻分压器和电容完成信号调理。


对于共模噪声(该噪声在ADC的两个输入端具有相同幅度)比较严重的应用场合,推荐采用图中通道4所示差分连接电路。 利用MAX11040K的真差分输入大大降低共模噪声的影响。

wKgaomSGwcuAC4tEAABIwbvGL_I563.gif

图2. MAX11040K在电力线监控典型应用中的原理框图,图中给出了一个±10V或±5V输出的变压器接口。 通道4接口电路采用差分设计,通道1采用单端设计。

PT和CT测量变压器相当于低阻互感器(等效阻抗RTR通常在10Ω至100Ω量级)。 为方便计算,以下示例中假设:变压器相当于一个有效输出电阻RTR = 50Ω的电压源; 为便于演示,变压器可以由一个50Ω输出阻抗的低失真函数发生器代替,如图3所示。

 MAX11040K的输入阻抗与时钟速率、ADC输入电容有关。 连接适当的旁路电容C3,设定XIN时钟频率 = 24.576MHz,则得到输入阻抗RIN等于130kΩ ±15%,误差取决于内部输入电容的波动。


R1、R2组成的电阻分压网络将±10V或±5V输入信号转换成ADC要求的±2.2V满量程范围(FSR)。 为确保该电路工作正常,需要优化R1和R2电阻值,以及C1、C2和C3电容的选择,以满足±10V或±5V输入的要求。 电阻R1和R2必须有足够高的阻抗,避免CT和PT变压器输出过载。 同时,R2阻值还要足够小,以避免影响ADC的输入阻抗(R2 << R在)。

对于单端设计,图2中MAX11040K通道1的输入电压VIN(f),可以利用式1计算:

wKgZomSGwcyAK_e2AAAG5os-bJQ097.gif

式中:

VTR是CT和PT变压器的输出电压。

RTR是变压器的等效阻抗。

R1、R2构成电阻分压网络。

RIN是MAX11040K的输入阻抗。

R2llRIN是R2和RIN的并联阻抗。

C3为输入旁路电容。

f是输入信号频率。

VIN(f)是MAX11040K的输入电压。

可以利用类似方法进行差分输入设计。

为保持高精度电阻分压比和正确的旁路特性,应选取低温度系数、精度为1%甚至更好的金属薄膜电阻。 电容应选取高精度陶瓷电容或薄膜电容。 最好选择信誉较好的供应商购买这些元件,例如Panasonic、Rohm、Vishay、Kemet和AVX®等。®®®®

MAX11040EVKIT提供了一个全功能、8通道DAS系统,评估板能够帮助设计人员加快产品的开发进程,例如,验证图2中所推荐的原理图方案。

wKgaomSGwc2AKhfbAAA6dHvcnls592.gif

图3. 基于MAX11040EVKIT的开发系统框图,需要两个精密仪表对测量通道进行适当校准。 测量结果可以通过USB发送到PC机,然后转换成Excel®文件作进一步处理。

函数发生器产生的±5V信号连接到MAX11040K的通道2,而另一函数发生器产生的±10V信号连接到MAX11040K的输入通道1。 电阻分压网络R1/R2和R3/R4对±5V或±10V输入进行相应的调整,使其接近ADC的满量程范围(FSR = ±2.2VP-P)。

电阻分压网络R1和R2的取值以及旁路电容C1和C2的取值如表2所示,均由式1计算得到,接近最佳的输入动态范围(约±2.10VP-P)。 该动态范围限制在0.05%相当高的精度范围,非常适合MAX11040K。 有关精度指标的详细信息,请参考MAX11040K数据资料。


VTR ±VP-P RTR (Ω) R1 (Ω) R2 (Ω) RIN (Ω) C3 (µF) f (Hz) VIN ±VP-P VADC (VRMS) Calibration Factor-KCAL Calibration Factor Error (%)
Calculations for nominal VTR and standard components (nominal) values









10 50 3320 909 130000 0.1 50 2.11268 1.4939 3.73301 0.07
-80 68.32 67.92 67.52 67.12 66.72 66.31 65.91 65.51 65.1 64.7
5 50 2490 1820 130000 0.1/td> 50 2.07026 1.46395 2.41516 0.99
Measured values for VTR, VIN, VINRMS with real components values and tolerances used in the experiment









9.863 50 ± 10% 3320 ± 1% 909 ± 1% 130000 ± 15% 0.1 ± 10% 50 2.09872 1.483899 4.699912 0
0 50 ± 10% 2490 ± 1% 1820 ± 1% 130000 ± 15% 0.1 ± 10% 50 0 0.00048 NA NA


表2列出的计算值均来自式1的计算结果和图3定义的精确测量。 表格顶部给出了式1在标称输入电压下的理论计算结果,选择标准的分立元件。 表2底部给出了演示系统中实际测量的元件值以及测试误差,同时还给出了用于FSR校准和计算得到的K卡尔系数,计算公式如下:

校准系数K卡尔按照式2计算:

KCAL = VTRMAX/(VADCMAX - VADC0) (式2)

式中:

VTRMAX是输入最大值,分别代表±5V或±10V输入信号。

VADCMAX是测量、处理后的ADC值,MAX11040EVKIT设置与图3相同,输入信号设置为VTRMAX。

VADC0是测量、处理后的ADC值,MAX11040EVKIT设置与图3相同,输入信号设置为VIN = 0 (系统零失调测量)。

KCAL (本实验中)是针对特别通道的校准系数,根据VADC计算输入信号VTR。

KCAL误差计算显示只基于标称值的KCAL“理论值”可能与基于实际测量值计算的K卡尔之间存在1%左右的误差。

所以,只是依靠理论计算还不足以支持实际要求; 如果设计中需要达到EU IEC 62053标准要求的0.2%精度,就必须对每个测量通道进行满量程(FSR)校准。

表3所示结果验证了½ FSR输入信号的测量。 利用高精度HP3458A万用表测量数据,利用式2中的校准系数K卡尔得到ADC测量值和计算值。


Generator Generator MAX11040K Calculation VERR Requirements
Nominal Signal (1/2 FSR) VTR_M - signal measured by HP3458A VIN Measured by ADC VTR_C = VIN × KCAL (VTR_M - VTR_C) × (100/VTR_C) IEC 62053
(VP-P) (VRMS) (VRMS) (VRMS) (%) (%)
Channel 1: ±5.000 3.4892 0.74259 3.490126 -0.026544 0.2
Channel 2: ±2.500 1.7471 0.7307 1.747384 -0.016265 0.2


表3中的VTR_M表示输入½ FSR信号时的测量值,而VTR_C表示基于MAX11040K测量值和KCAL处理、计算得到的数值。

结果显示调理后的电路测量误差VERR低于0.03%,可轻松满足EU IEC 62053规范要求的0.2%精度指标。

wKgZomSGwc6AFrDPAAFd0H4ppmI464.gif

图4. MAX11040EVKIT GUI允许用户方便地设置各种测量条件:12.8ksps、256采样点/周期和1024次转换。 此外,GUI的计算部分提供了一个进行快速工程运算的便捷工具。

测量结果也可以通过USB口传送到PC端,从而利用强大的(而且免费)的Excel进行详细的数据分析。


结论

MAX11040K等高性能多通道同时采样、Σ-Δ ADC非常适合工业应用的数据采集系统。 这些新型ADC设计能够提供高达117dB的动态范围,有效改善积分非线性和微分非线性,采样速率高达64ksps。 选择适当的信号调理电路,MAX11040K能够满足甚至优于高级“智能”电网监控系统的指标要求¹。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    雪,等.多芯片点胶贴片系统的工艺与控制特性分析[J].电子工艺技术,2022,43(1):29-40. [4]张宏志.自动化设备数据采集系统的开发与应用[J].南方农机,2020,51(5):218......
    打印机的并行口通常工作在Centronics兼容模式,其他4种模式对并行口引脚定义与该模式的完全兼容,因此数据采集系统针对该模式的特点进行设计,也利于今后扩展和升级其他并行口设备数据采集系统。 并行口有25......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......
    统一管理;设备数据采集系统采集地磅设备、净乳机、灌装机,以及包装产线信息。生产管控层:包含LIMS、EAM、MES、原辅料WMS、成品WMS;运营管理层:包含OA、ERP、售后服务系统、人力资源系统......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>