Transphorm 最新技术白皮书:常闭耗尽型(D-Mode)与增强型(E-Mode) 氮化镓晶体管的优势对比

发布时间:2023-10-19 11:17  

氮化镓功率半导体器件的先锋企业 Transphorm说明了如何利用其Normally-Off D-Mode平台设计充分发挥氮化镓晶体管的优势,而E-Mode设计却必须在性能上做出妥协

氮化镓功率半导体产品的全球领先企业 Transphorm, Inc. (Nasdaq: TGAN) 今日发布了题为『Normally-off D-Mode 氮化镓晶体管的根本优势』的最新白皮书。该技术文献科普了共源共栅 (常闭) d-mode氮化镓平台固有的优势。重要的是,该文章还解释了e-mode平台为实现常闭型解决方案,从根本上 (物理层面) 削弱了诸多氮化镓自身的性能优势。


要点
 
白皮书介绍了 normally-off d-mode 氮化镓平台的几个关键优势,包括:

1.性能更高:优越的 TCR (~25%),更低的动态与静态导通电阻比 (~25%),从而降低损耗,获得更高的效率和更优越的品质因数 (FOM)。
2.高功率级应用更加容易:Transphorm d-mode 具有较高的饱和电流,而 e-mode 则必须通过并联才能提供相同的电流,但这会导致功率密度和可靠性下降。
3.稳健性且易驱动性:采用最稳健的硅MOSFET SiO2栅极,不受 e-mode 的 p 栅极限制,可兼容硅基驱动器和控制器。 

Transphorm业务开发和营销高级副总裁Philip Zuk表示,“长期以来,宽禁带行业一直围绕两种不同架构氮化镓晶体管争论高下——常闭型 d-mode和e-mode氮化镓。我们最初进入市场时,对这两种技术路线都进行了研究探討,最终决定采用常闭型d-mode解决方案,因为该方案不仅最可靠,且具有最高的性能和广泛的驱动器兼容性。而且,从系统设计角度出发,常闭型 d-mode具备更全面和长远的技术发展路线,而我们尚未在e-mode方案看到这一优势。本白皮书用意是在明确解释我们为什么这样设计氮化镓器件,从而帮助客户更了解选择氮化镓器件时需要关注哪些性能指标。”

十多年来,Transphorm 凭借最可靠的氮化镓平台成功引领行业,目前,Transphorm器件的现场运行时间已超过 2000 亿小时,覆盖了从低功率到高功率系统最广泛的应用领域。Transphorm公司不仅率先获得 JEDEC 资格认证,而且也是首家取得 AEC-Q101 (汽车级)认证的企业,并率先发布 900V氮化镓平台。目前正在开发可用于 800 V 电动​​汽车电池应用且已获验证的1200 V平台。

Transphorm 也展示了一款四象限开关开关管,在微型逆变器和双向系统等目标设计中可显著减少器件使用数量(2~4个)。此外,Transphorm还实现了在氮化镓器件上耐受5微秒的短路电路(SCCL)技术,有望可开启数十亿美元的电机控制和电动汽车动力应用市场。

凭借着全方位的产品平台,Transphorm器件已经成功应用于从数十瓦至7.5kW的设计及量产产品,应用领域涵盖计算(数据中心或网络的电源、高性能游戏、高算力应用、人工智能计算)、能源/工业 (任务关键型UPS和微型逆变器) 以及消费类适配器/快充电源(笔记本电脑、移动设备、家用电器)。而这个成就归功于一开始即采用常闭型d-mode设计方案。

白皮书概要 

该技术文献全面介绍了氮化镓在物理特性方面自带的优势特性以及常闭型d-mode 氮化镓解决方案如何发挥最大的自身优势,用于创建具有更高可靠性、可设计性、可驱动性、可制造性和多样性的卓越平台。

本白皮书还特别探讨了二维电子气通道 (2DEG) 的作用。2DEG是氮化镓 HEMT 异质结结构中自发形成的自然现象,由于所有氮化镓平台 (包括e-mode) 本质上都是常闭型d-mode 平台,本文详细说明了选择 d-mode 或 e-mode的方式关断器件,将如何影响2DEG 和整个平台的性能 。

该白皮书还纠正了业内常见的有关常闭型 d-mode 和 e-mode 器件性能的一些误区。

白皮书获取方式

本白皮书(中文版)免费提供,可通过以下链接下载:https://transphormusa.cn/zh/document/wp-dmode-gan-advantages/

关于Transphorm

Transphorm, Inc.是氮化镓革命的全球领导者,致力于设计、制造和销售用于高压电源转换应用的高性能、高可靠性的氮化镓半导体功率器件。Transphorm拥有最庞大的功率氮化镓知识产权组合之一,持有或取得授权的专利超过1,000多项,在业界率先生产经JEDEC和AEC-Q101认证的高压氮化镓半导体器件。得益于垂直整合的业务模式,公司能够在产品和技术开发的每一个阶段进行创新:设计、制造、器件和应用支持。Transphorm的创新使电力电子设备突破硅的局限性,以使效率超过99%、将功率密度提高50%以及将系统成本降低20%。Transphorm的总部位于加州戈利塔,并在戈利塔和日本会津设有制造工厂。如需了解更多信息,请访问https://transphormusa.cn/zh/。欢迎在Twitter @transphormusa和微信@Transphorm_GaN上关注我们。 

文章来源于:ECCN    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    -on-SiC的功率密度。这意味着可以把金刚石衬底氮化镓芯片缩小三倍或把其射频功率提升3倍,该项目完成了设计测试评估,很可能金刚石衬底GaN将在5年内满足其制造性要求。 这里谈下TriQuint......
    具有以下特点: ● 微型逆变器采用全新氮化镓电源、多组MPPT输入,峰值转换效率高达96.7%,还具有高温不降载,60℃下长期满载输出等优势,主要聚焦光伏领域尤其是高效户用及小型工商业光伏场景; ● 第三代氮化镓分容水冷一体机采用高压直流母线技术与氮化镓......
    产品的自豪与重视。日前,PI 资深技术培训经理阎金光也详细讲解了最新的InnoMux2创新之处,作为1700V氮化镓业界的首款产品,着实配得上“新标杆”这一称号。1700V意味着什么?对于......
    德州仪器发布低功耗氮化镓系列新品,可将交流/直流电源适配器体积缩小一半; 助力工程师开发系统尺寸减半且效率超过 95% 的交流/直流解决方案,从而简化散热设计 全新氮化镓器件可兼容交流/直流......
    德州仪器发布低功耗氮化镓系列新品;可将交流/直流电源适配器体积缩小一半• 助力工程师开发系统尺寸减半且效率超过 95% 的交流/直流解决方案,从而简化散热设计• 全新氮化镓器件可兼容交流/直流......
    德州仪器发布低功耗氮化镓系列新品;可将交流/直流电源适配器体积缩小一半• 助力工程师开发系统尺寸减半且效率超过 95% 的交流/直流解决方案,从而简化散热设计• 全新氮化镓器件可兼容交流/直流......
    最新氮化镓(GaN)器件可提供高达100W功率,PI InnoSwitch芯片销量突破10亿颗;深耕于高压集成电路高能效功率转换领域的知名公司Power Integrations日前宣布,突破......
    的英国射频(RF)氮化镓(GaN)产品和设备。 目前,英国还不完全具备开发和制造应用于5G且商用的RF-GaN器件的能力。 ORanGaN项目的建立正是为了补强这一短板,该项......
    HMC1087-DIE数据手册和产品信息;HMC1087是一款8W氮化镓(GaN) MMIC功率放大器,工作范围为2至20 GHz。 该放大器通常提供11 dB小信号增益,+39 dBm饱和......
    HMC1086-DIE数据手册和产品信息;HMC1086是一款25W氮化镓(GaN)功率放大器MMIC,工作范围为2至6 GHz。该放大器通常提供22 dB小信号增益,+44.5 dBm饱和......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>