AT89S51单片机的复位操作及复位电路设计

发布时间:2023-03-27  

复位是单片机的初始化操作,只需给AT89S51的复位引脚RST加上大于2个机器周期(即24个时钟振荡周期)的高电平就可使AT89S51复位。


复位操作

当AT89S51进行复位时,PC初始化为OOOOH,使AT89S51单片机从程序存储器的OOOOH单元开始执行程序。除了进入系统的正常初始化之外,当程序运行出错(如程序“跑飞”)或操作错误使系统处于“死锁”状态时,也需按复位键即RST脚为高电平,使AT89S51摆脱“跑飞”或“死锁”状态而重新启动程序。


除PC之外,复位操作还对其他一些寄存器有影响,这些寄存器复位时的状态见表2-7。由表2-7可以看出,复位时,SP-07H,而4个I/O端口PO~P3的引脚均为高电平。在某些控制应用中,要注意考虑PO~P3引脚的高电平对接在这些引脚上的外部电路的影响。例如,Pl口某个引脚外接一个继电器绕组,当复位时,该引脚为高电平,继电器绕组就会有电流通过,吸合继电器开关,使开关接通,可能会引起意想不到的后果。


表2-7复位时片内各寄存器的状态

AT89S51单片机的复位操作及复位电路设计

复位电路设计

AT89S51的复位是由外部的复位电路实现的。AT89S51片内复位电路结构如图2-17所示

复位引脚RST通过一个施密特触发器与复位电路相连,施密特触发器用来抑制噪声,在每个机器周期的S5P2:施密特触发器的输出电平由复位电路采样一次,然后才能得到内部复位操作所需要的信号。


复位电路通常采用上电自动复位和按钮复位两种方式。

最简单的上电自动复位电路如图2-18所示

AT89S51单片机的复位操作及复位电路设计

对于CMOS型单片机,由于在RST引脚内部有一个下拉电阻,故可将电阻R去掉,而将电容C选为10 μF。


上电自动复位是通过外部复位电路给电容C充电加至RST引脚一个短的高电平信号,此信号随着VCC对电容C的充电过程而逐渐回落,即RST引脚上的高电平持续时间取决于电容C的充电时间。因此为保证系统能可靠地复位,RST引脚上的高电平必须维持足够长的时间。


除了上电复位外,有时还需要按键手动复位。按键手动复位有电平和脉冲两种方式。


按键手动电平复位是通过RST端经电阻与电源Vcc接通来实现,具体电路如图2-19所示

当时钟频率选用6 MHz时,C的典型取值为10μF,R取值为2kΩ。

脉冲复位是利用RC微分电路产生的正脉冲来实现的,脉冲复位电路如图2-20所示

图中的阻容参数适于6 MHz时钟。

图2-21所示电路能输出高、低两种电平的复位控制信号,以适应外围I/O接口芯片所要求的不同复位电平信号。图2-21中,74LS122为单稳电路。实验表明,电容C选择约为0.1μF较好

在实际应用系统设计中,若有外部扩展的I/O接口电路也需初始复位,如果它们的复位端和AT89S51的复位端相连,复位电路中的R、C参数要受到影响,这时复位电路中的R、C参数要统一考虑,以保证可靠复位。如果AT89S51与外围I/O接口电路的复位电路和复位时间不完全一致,使单片机初始化程序不能正常运行,外围I/O接口电路的复位也可以不与AT89S51复位端相连,采用独立的上电复位电路。若RC上电复位电路接施密特电路输入端,施密特电路输出接AT89S51和外围电路复位端,则能使系统可靠地同步复位。一般来说,单片机的复位速度比外围I/O接口电路快些。为保证系统可靠复位,在初始化程序中应安排一定的复位延迟时间。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    的3个LED电路图: 下面是JZ2440的3个按键的电路图 通过查找nLED_1,nLED_2,nLED_4对应的引脚,发现它们分别对应GPF4,GPF5,GPF6,如图: 通过查找EINT0......
    ; ② 低功耗电源管理 ●   支持低功耗模式,在休眠模式IBAT为60uA ,在待机模式IBAT为70uA; ●   支持INH引脚控制关断整个节点; ●   支持任意帧唤醒与特定帧唤醒,集成低功耗帧接收检测电路......
    -RS04[6]。内部电路图如图5所示。 图5 超声波内部电路图图 超声波有四个引脚,分别为供电电压为5 V 的VCC电源引脚,GND 接地线,TR 触发控制信号输入,EC回响信号输出,其引脚电路图......
    CE端导通,则必须让PB2输出高电平。所以,此时要配置PB2输出高电平,蜂鸣器才会发声。 图5 有源蜂鸣器电路图 了解了GPIO口的输出功能后,下面我们通过一个例子来进一步学习GPIO引脚......
    过程中发现每次都需要去设置GPIO0的状态,如何实现自动给实现GPIO0电平状态的切换呢?看下面的电路。 可以看到这个下载电路相对于普通的CH340G下载电路,这个电路是把CH340G芯片中的DTR和RTS引脚......
    5V的电源引入开发板使用,其电路图如下,1脚为电源正极,5脚为负极,串接的二极管是为了保护我们的开发板,防止有个别的连接线极性不对烧坏板子,保护电路在我们设计任何电路时都要考虑到,这个......
    结构在本文下面会具体介绍。 这边的电路图稍微提一下: 保护二极管:IO引脚上下两边两个二极管用于防止引脚外部过高、过低的电压输入。当引脚电压高于VDD时,上方的二极管导通;当引脚电压低于VSS时,下方......
    围元器件发生漏电、短路、开路或变值时,或外围电路连接的是一个阻值可变的电位器,则电位器滑动臂所处的位置不同,都会使引脚电压发生变化。 (6)若ic各引脚电压正常,则一般认为ic正常;若ic部分引脚电......
    面的知识相比他更具综合能力,写起来考虑的问题自然也变多了。而前面学习过的定时器与中断将是单片机通信的基础。   51单片机串口通信电路详解      图1 串行通信实验电路图   下面就对图1 所示电路......
    的好坏。(5)IC引脚电压会受外围元器件影响。当外围元器件发生漏电、短路、开路或变值时,或外围电路连接的是一个阻值可变的电位器,则电位器滑动臂所处的位置不同,都会使引脚电压发生变化。(6)若IC各引脚电......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>