一种电动汽车空调系统PTC加热器控制器设计

发布时间:2024-07-19  

0   引言

发展电动汽车是国家应对国际环境和能源危机的重要决策,我国大力发展电动汽车并取得显著技术成果,欧美各国从国家高度到企业层面,也已迅速调整发展战略,将汽车电动化作为未来的发展方向。


传统燃油车空调系统利用发动机热量制热,电动汽车电驱系统效率可以高达90% 以上,损耗产生的热量远不足以供给空调系统制热,所以电动汽车空调系统制热使用PTC(正温度系数)加热器产生热量。目前比较普遍的方案是使用继电器控制PTC 加热器电源通断,通过风门开度控制冷热风的风量来控制温度,此类方案能源浪费较大。


采用PWM(脉宽调制)方式控制功率开关器件通断PTC 加热器电源,实现PTC 加热器输出功率的线性控制。本设计中PTC 加热器峰值功率5.2 kW,输入电压范围260~410 V。考虑开关器件的散热需求,将功率电路均分为两路2.6 kW。考虑设计裕量,单路最大电流按10 A 设计,同时也有助于减小开关器件开通瞬间的峰值电流。


1   硬件设计

1.1 硬件框图

总体硬件方案原理框图如图1 所示。控制电路、驱动和信号采样处理电路在高压侧,辅助电源、下电保持控制和CAN 通讯电路都为隔离电路,高低压电路之间满足AC 2 000 V rms 耐压1 min 绝缘要求。

Secure Vault PSA Level 3.png

图1 硬件框图

1.2 输入和下电保持电路

如图2 所示,KL30 为低压蓄电池12 V 常电,Z1吸收瞬态浪涌,D1 和D6 为防反接二极管,L1、C3 和C4 组成EMC 滤波器。整车上电后KL15 为高电平,Q3和Q1 导通,控制器被唤醒工作。整车下电后KL15 为低电平,为保证控制器进行故障诊断处理,控制电路保持KL15-KEEP 信号为高电平,高低压之间通过隔离光耦进行信号传输,Q1 仍然导通,程序处理完成KL15-KEEP 信号为低电平,Q1 截止,控制器输入电源断开进入休眠,静态电流为微安级别。

1616052052711061.png

图2 输入和下电保持电路

1.3 辅助电源

辅助电源采用反激拓扑, 选用汽车级芯片LM3478Q-Q1。输入电压范围6~16 V,主路输出电压为5 V,为控制电路供电。辅路输出为15 V,为功率开关器件提供栅极驱动电源。变压器磁芯选择EE13,绕制参数如表1 所示。

表1 反激变压器绕制参数

1616052155709262.png

1.4 控制电路和CAN通讯电路

控制芯片符合AEC-Q100 标准,内置两个具备边沿对齐功能的专用PWM 信号输出模块,输出的PWM信号作为驱动电路的输入。包括6 路A/D 采样,两路PTC 散热器电流采样,一路高压电压采样,三路温度采样。CAN 通讯电路选用TI 公司的隔离型CAN 芯片ISO1050。

1.5 驱动和功率电路

PWM 信号频率低,功率控制精度会较低,高频率可以提高功率控制精度,但是同时也会增加功率器件的开关损耗。PTC 加热器本身的寄生电容导致开关管开通瞬间会有很大的冲击电流。除了通过调节驱动电路控制开关速度外,两路开关管不同时开通,可以减小开通瞬态电流。

驱动芯片选用UCC27524A1-Q1,具有两个独立的栅极驱动通道,ENA 和ENB 管脚拉低可以立即关断驱动输出,进行电路保护(如图3)。

1616052263571510.png

图3 驱动和功率电路

1.6 信号处理

高压通过分压电路和运放跟随电路处理后送至单片机A/D 管脚。电压低于260 V 或者高于410 V,且持续1 s 则关闭驱动信号,电压恢复到正常范围内则继续工作。电流采样电阻电压信号经放大电路到单片机的A/D管脚。

硬件过流保护电路如图4 所示。正常工作时,VIS1< Vref,比较器输出高电平。出现过流时VIS1 > Vref,比较器输出变低电平,驱动芯片的ENA 和ENB 管脚被拉低,停止输出驱动电压。同时控制芯片检测到低电平,停止输出PWM 信号并上报故障。

1616052359318522.png

图4 硬件过流保护电路

2   控制策略

控制策略如图5 所示。控制器唤醒自检后进入待机模式,接收到空调加热指令首先进行故障判断,如果检测到故障则进行保护,同时上传故障状态并储存故障码。

如果无故障则根据驾驶室温度动态调节PWM 信号占空比,开始阶段占空比采用逐步变大的软启动方案,最终保持车内温度恒定。

1616052517961080.png

图5 控制策略流程图

3   测试波形和实物

PTC 加热器电流和功率器件Vce 电压如图6 所示,上电瞬间冲击电流持续约10 μs。

1616053401487373.png

图6 开关管电压和冲击电流

4   整车验证

控制器搭载整车分别在环境温度0、-10、-15和-20 ℃下进行测试,空调制热温度设定32.5 ℃,自动制热策略为先开启5 min 大功率制热,之后降低功率保温。车速80 km/h,测试数据如表2。

表2 控制器整车搭载测试数据

1616052780367423.png

1616052684845225.png

图7 控制器实物

5   结论

PTC 加热器控制器可以实现整车空调系统制热功率的精确控制,在达到同等制热效果的条件下降低制热功耗,进而增加续航里程。同时可以将PTC 加热器工作状态上传至整车通讯网络并提供各种保护。


参考文献:

[1] 王兆安,刘进军.电力电子技术[M].5版.北京:机械工业出版社,2009.

[2] 王新树,孔令静,付超,等.电动空调PTC加热器控制方案设计[J].北京汽车,2019(02):30-33.

[3] 冯雪丽,臧竞之.汽车空调PTC加热器控制器方案设计[J].机电工程技术,2018,47(12):99-101.

[4] 石林,岳秀麟,杨春华.高压PTC加热器控制系统的设计[J].汽车电器,2020(05):21-25.


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>