用示波器对单片机I2C时序进行图形波形分析的试验小结

发布时间:2024-01-17  

一技在手天下我有!如您觉得本文对您有用烦请收藏转发加关注哟~笔芯

本文引用地址:

对于开发的朋友来说,协议实在是再熟悉不过了,有太多的器件,采用的都是通过来进行相应的设置。今天,我们就随便聊聊这个协议。

I2C协议中最重要的一点是I2C地址。这个地址有7位和10位两种形式。7位能够表示127个地址,而在实际使用中基本上不会挂载如此多的设置,所以很多设备的地址都采用7位,所以本文接下来的说明都是基于此。

I2C还有一个很重要的概念,就是“主—从”。对于从设备来说,它是啥都不干的,更不会自动发送数据;而主设备,则是起到控制作用,一切都是从它开始。

除了GND以外,I2C有两根线,分别是SDA和SCL,所有的设备都是接到这两根线上。那么,这些设备如何知道数据是发送给它们呢?这就得依靠前面所说到的地址了。设备I2C的地址是固定的,比如0x50,0x60等等。因为只能有127个地址,地址冲突是很常见的,所以一般设备都会有一个地址选择PIN,比如拉高时候为0x50,接地为0x60。如果无论拉高还是接地,都和别的芯片有冲突,那该怎么办呢?答案是:凉拌,没办法。遇到这种情况,只能换芯片了。

我们来看I2C协议中的数据传输时序图:


SCL是时钟,SDA承载的是数据。当SDA从1变动到0,而SCL还是1时,表示开始数据传输。接下来的7位,就是设备的地址。紧接着的是读写标志,其为1时是读取,为0则是写。如果I2C总线上存在着和请求的地址相对应的设备,则从设备会发送一个ACK信号通知主设备,可以发送数据了。接到ACK信号后,主设备则发送一个8位的数据。当传输完毕之后,SCL保持为1,SDA从0变换到1时,标明传输结束。

从这个时序图中可以看到,SCL很重要,并且哪个时钟沿是干嘛的,都是确定好的。比如,前面7个必定是地址,第8个是读写标志,数据传输必须是8位,必须接个ACK信号等等。

前面的时序图并没有标明数据传输的方向,我们现在看看写操作的数据流向:


网格的是主设备发送的,白色格子是从设备发送的。从图示中可以看到,对于写操作,从设备都只是发送ACK进行确认而已。

而读操作的数据流向,就有所不同,如图:


这时候,从设备除了发送ACK以外,紧跟着的还有数据。


我们用示波器来查看波形图,以便于理解。


将示波器的X和Y分别接到SDA和SCL,得到波形并分析如图:


I2C的概念原理网上都有就不说了,这里只把我把两个开发板通过I2C通讯的调试经验记录分享一下。


I2C要求要有一个主设备,负责发起请求和控制时钟;其它为从设备,通过设备ID地址来识别并响应主设备请求。主从设备要轮流控制SDA。一开始我没搞明白这一点,直接加了写I2C数据代码,然后用示波器在SDA和SCL脚测量,却只能找到些凌乱的波形,没有预期的效果。后来把从设备接上,两边写好代码,互相有了响应,这才在示波器上看到波形。

这里我找了一个主设备往从设备写数据的例子,代码如下:

char buf[128];

int len;

strcpy(buf,"..huz_hello_i2c/n");

len=strlen(buf);

//deviceid: 0x3c

write_i2c(0x3c, buf , len);

接收端的代码比较简单,就不贴了。

将示波器的X和Y分别接到SDA和SCL,得到波形并分析如图:


从图中可知时序如下:

  1. 由主机发起,在SCL为高电平时,SDA由高到低切变,形成开始信号;

  2. 接着是7位地址和一位读写标志,这里7位地址为0111100,即0x3c,正是我们代码中设置的地址ID;最后一位为0表示写操作;

  3. 接着在下一个时钟,主机以高电平状态释放SDA,这时从机响应,将SDA拉低了;

  4. 接着是两个8位数据00101110与响应,即0x2E,正是“.”号的ASCII码,符合预期输出;

  5. 还有其它数据和最后的停止位,图中被截掉了。

从图中可知,纵向一格是200mV,则SDA和SCL的电平大概就是350mV;由于信号笔上设置了信号x10,因此实际电平应该大概是3.5V(理论上应该是3.3V)。横向一格是25us,10个时钟周期大概用了4格,即4x25us=100us,平均每个时钟周期是10us,可算出传输频率为1/10us=100,000/s,即100k bps。

另外,对于读从设备内容,基本流程是主设备先往从设备写一个命令,然后再输出读取命令,然后才由从设备发送数据。过程类似,不再具体分析了。

下图示例中,主机先向从机写了一个地址命令,然后重新开始并进入读取周期。


分析波形可检测出I2C通信工作是否正常,是否符合预期,对我们编程调试诊断有辅助作用。


文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    灯输出和每个转向指示灯处测量的平均电压和/或电流值得出的。 运行仿真后,您将可以访问相应的实验报告和“结果”部分中的绘图信号,也可以通过双击打开它们。正常运行下应该可以看到如下实验报告图3和信号波形图4。 图3 标称分析实验报告......
    版本执行相同的测量操作。将AWG波形切换为方波,然后测量延迟、上升和下降时间,并记录在实验报告中。将AWG波形切换为正弦波(与之前一样,1 kHz频率),再次测量谐波失真。注意调整AWG幅度和偏移,以得到和之前电路相似的输出波形......
    由发送接口、接收接口和抖动抑制器组成。发送接口根据所使用的传输介质类型产生符合规定的波形,并以适当的源阻抗驱动网络。T1波形发生电路包括-7.5dB、-15dB或-22.5dB的DSX-1和CSU线路......
    生成的能力,比较适合用于各种仿真实验。 今天,博宇讯铭就针对这种特殊的信号源——任意波形发生器,进行简单的介绍以及针对通道合并功能进行讲解,而本次讲解是以鼎阳SDG6000X-E任意波形发生......
    器有很多不同的类型:   任意波形发生器: 任意波形发生器是一种信号发生器,可以创建用户可以指定的非常复杂的波形。这些波形几乎可以是任何形状,可以通过多种方式输入,甚至可以扩展到波形上的指定点。   本质上,任意波形发生器可以被认为是一个非常复杂的函数发生......
    Spectrum仪器为数字化仪和任意波形发生器提供数字脉冲发生器功能;Spectrum仪器公司宣布推出数字脉冲发生器(DPG)功能,用于公司旗下高分辨率和中速的数字化仪和任意波形发生器(AWG)系列......
    Station任意波形编辑软件,方便用户进行任意波编辑导入。全新升级的模拟、数字、IQ调制,为高等教育通信实验、工业领域电机控制乃至通信系统性能的检定方便提供便利。 全新的DG5000 Pro系列函数任意波形发生......
    调制,为高等教育通信实验、工业领域电机控制乃至通信系统性能的检定方便提供便利。全新的DG5000 Pro系列函数任意波形发生器产品,将为包含嵌入式电路设计与测试,功率器件性能验证,汽车......
    过自行搭建的测量装置对线圈磁场进行测量,与仿真分析的结果进行对比分析。 实验过程: 任意波形发生器和高压放大器联合电源可以发出与仿真模型相同的两种激励信号。 激励信号接人由线圈和限流电阻串联成的电路......
    Spectrum仪器为数字化仪和任意波形发生器提供数字脉冲发生器功能; 中国北京,2023年6月7日讯——Spectrum仪器公司宣布推出数字脉冲发生器(DPG)功能,用于......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>