目标
本次实验旨在设计和构建一款音频放大器,该放大器从驻极体麦克风获取小输出电压并将其放大,以便驱动小型扬声器。
背景知识
驻极体麦克风是一种电容式麦克风,其电容器极板上始终存在一定量的电荷,因而无需传统电容式麦克风中用于偏置电容器的外部幻象电源。然而,大多数商用驻极体麦克风都会集成前置放大器(通常是开漏FET电路),因此只需低压小电源。
我们可以使用晶体管来设计简单的音频放大器,无论是否有负反馈。不过,负反馈能够非常有效地改善失真性能。在本实验中,我们设计构建了一个交流耦合的同相运算放大器,期望电压增益为10,输出端有一个环内射极跟随器,并且与扬声器进行交流耦合。运算放大器可提供电压增益,射极跟随器则充当缓冲区,提供驱动扬声器所需的电流。将射极跟随器放置在反馈回路内有助于提高其整体性能。
放大器设计
驻极体麦克风包括一个开漏FET前置放大器,需要在其输出端和5 V电源之间连接一个阻值为680 Ω至2.2 kΩ的漏极电阻RD,如图1所示。在此设计中,漏极电阻设置为2.2 kΩ,采用5.0 V电源时,漏极电压约为4.5 V。
图1.驻极体麦克风输出级。
我们的设计目标是将标称400 mV p-p信号驱动至8 Ω扬声器,随后以地为基准进行交流耦合,需要约±25 mA的电流。该放大器设计采用5 V单电源供电。因此,运算放大器直流电平偏置到2.5 V的中间电源电压,并且输入、输出和反馈信号均会进行交流耦合。通过对输入信号进行交流耦合,麦克风输出的直流电平就会与放大器输入的直流电平不同。对于电路的运算放大器部分,可使用ADALP2000套件中提供的OP484四通道运算放大器,对于电路的射极跟随器部分,则可以使用套件中包含的2N3904 NPN晶体管。
图2.放大器整体原理图。
材料
ADALM2000主动学习模块
无焊试验板
跳线
一个OP484轨到轨放大器
一个驻极体麦克风
一个2N3904 NPN晶体管
一个8 Ω扬声器
一个47 Ω电阻
一个68 Ω电阻
一个100 Ω电阻
一个1 kΩ电阻
一个2.2 kΩ电阻
1个20 kΩ电阻
一个4.7 μF电容
一个47 μF电容
一个220 μF电容
硬件设置
在无焊试验板上构建图3所示的电路。
图中CBP的标注47kΩ错了,应该是47µF
图3.集成驻极体麦克风的音频放大器原理图。
图4.集成驻极体麦克风的音频放大器试验板连接。
若想检查放大器的功能,可以从电路中拆下麦克风和扬声器,然后使用示波器工具进行检查。因此,试验板连接如图5所示。
图5.音频放大器示波器试验板连接。
程序步骤
若要检查放大器增益,请按照图5所示构建设置。打开Scopy并将正电源设置为5 V。将信号发生器通道1设置为正弦波形,幅度峰峰值为50 mV,频率为200 Hz,偏移为2.5 V。尝试增加正弦波的幅度,直到观察到削波。在示波器中,监测通道1上的输入信号和通道2上的放大器输出信号。将垂直分辨率设置为100 mV/div,位置设置为–2.5 V,这样就能在示波器窗口中看到信号,如图6所示。
图6.放大器输入和输出波形。
将驻极体麦克风和扬声器连接到电路中,如图4所示。将扬声器直接移到麦克风前面,直到出现声音反馈。
问题:
为什么正弦波的幅度增加时会发生削波?
为什么扬声器和麦克风彼此靠近时会出现声音反馈?
您可以在学子专区论坛上找到问题答案。
关于作者
Andreea Pop自2019年起担任ADI公司的系统设计/架构工程师。她毕业于克卢日-纳波卡理工大学,获电子与通信学士学位和集成电路与系统硕士学位。
Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年2月在罗马尼亚克卢日-纳波卡加盟ADI公司。他目前是贝碧思鲍耶大学软件工程硕士项目的理学硕士生。他拥有克卢日-纳波卡科技大学电子与电信工程学士学位。