电动汽车BMS的主动均衡和被动均衡是什么?

发布时间:2023-06-19  

主动均衡和被动均衡,是电动汽车BMS业界争论热点之一。像极了华山剑派的气宗和剑宗,业内争论的不亦乐乎,业外看的却是不明所以。


均衡之于动力锂电池组的重要性就不再赘述,没有均衡的锂电池组就像是得不到保养的发动机,没有均衡功能的BMS只是一个数据采集器,很难称得上是管理系统。主动均衡和被动均衡都是为了消除电池组的不一致性,但两者的实现原理可谓是截然相反。因为也有人把依靠算法由BMS主动发起的均衡都定义为主动均衡,为避免歧义,这里把凡是使用电阻耗散能量的均衡都称为被动均衡,凡是通过能量转移实现的均衡都称为主动均衡。


被动均衡先于主动均衡出现,因为电路简单,成本低廉至今仍被广泛使用。其原理是依照电池的电量和电压呈正相关,根据单串电池电压数据,将高电压的电池能量通过电阻放电以与低电压电池的电量保持相等状态,也有以最高电压为判据,比如三元锂电最高4.2V,凡是超过4.2V就开始放电均衡。


因为BMS概念和产品最早是由国外提出,国外半导体厂商最先设计出专用IC,开始只是检测电压和温度,后来均衡的概念提出后,就采用了电阻放电的方法并将这个功能加入到IC中(因为这个放电控制的功能容易集成进芯片里),现在广泛应用的TIMAXIMLINER均有此类芯片在产,有的是将开关驱动做到芯片里,有的甚至试图将开关也做进了芯片里。从被动均衡原理及示意图中我们可以看出,如果电池组比作木桶,串接的电池就是组成木桶的板,电量低的电池是短板,电量高的就是长板,被动均衡做的工作就是“截长不补短”。电量高的电池中的能量变成热耗散掉,电能使用效率低。不仅如此,因为将电能转变成热量耗散,带来了两难的问题,这就是如果均衡电流大,热量就多,最后如何散热成为问题;如果均衡电流小,那么在大容量电池组中、电量差别大的情况下所起到的电量平衡作用效率很低,要达到平衡需要很长时间,在应用中有种隔靴搔痒的感觉。权衡利弊,所以现在被动均衡的电流一般都在百毫安(100mA)级别。


因为被动均衡的局限,主动均衡的概念得以提出并发展。主动均衡是把高能量电池中的能量转移到低能量电池中,相当于对木板“截长补短”。因为不像被动均衡只有“截”,在如何“补”的问题上业内充分发挥了各自的优势和想象力,主动均衡的方案可谓异彩纷呈。除了飞度电容的方案(因为适用串数低,转移有局限性而未能成为主流),还有变压器的方案,变压器方案中又有各种拓扑结构。半导体厂家也设计了电池专用的DCDC转换芯片,命名为主动均衡控制芯片来推向市场,显然是不想错过这班车。


主动均衡带来的好处显而易见:效率高,能量被转移,损耗只是变压器线圈损耗,占比小;均衡电流可以设计的大,达到几安甚至10A级别,均衡见效快。虽然有这些好处,主动均衡也带来了新的问题。首先是结构复杂,尤其是变压器方案。几十串甚至上百串电池需要的开关矩阵如何设计,驱动要怎么控制,这都是令人头痛的问题,所以这也是为什么至今主动均衡功能无法完全集成进专用IC的原因,半导体厂家一直希望能做出大一统的芯片,但在BMS上实在是力有不逮。对BMS整机厂家也是如此,主动均衡电路结构方面,少有厂家的设计可以令人耳目一新,击节叫好。其次是成本问题,复杂的结构必然带来复杂的电路,成本与故障率上升是必然的,现在有主动均衡功能的BMS售价会高出被动均衡的很多,这也多少限制了主动均衡BMS的推广。


因为两种均衡功能各有利弊,本来主动均衡功能是可以替代被动均衡功能的,但因为结构复杂成本高,而且结构复杂之后故障率也会高而与被动均衡处于胶着状态,业内人士常为了哪种均衡更好争论不休。特斯拉的BMS均衡功能(被动均衡,见下图中Cellbalancingcircuit中所指均为放电电阻)经常被示范以证明被动均衡强于主动均衡。其实这反而证明了任何技术选择都要和整体条件适用的道理。特斯拉的电池是松下提供的特制的18650锂电池,本身一致性非常好,而且在寿命期间一致性差异扩大有限,用被动均衡就足够了。不像我国从电池原材料到生产工艺还有待提高,电池一致性离散程度还比较大,主动均衡在动力型锂电池组应用中会更适合。


被动均衡适合于小容量、低串数的锂电池组应用,主动均衡适用于高串数、大容量的动力型锂电池组应用。对BMS来讲,除了均衡功能非常重要,背后的均衡策略更为重要。在电池单体的一致性差异在一定范围内时,电池的电量和电压成正相关;但是当电池的一致性差的远,也就是有电池处于受损状态时,电量和电压相关性就没那么强了,这时的均衡依据,就不能单以电压这一数据来判断。如果意识不到有电池损坏到临界状态以下,依然根据电压均衡,反而会对电池造成伤害,尤其是主动均衡,因其电流大造成的伤害会比被动均衡更大。


电动自行车发展史上,有过“电池不是被用坏的,而是被充坏的”说法,电池损坏的矛头指向了充电器厂家。不知电动汽车发展史上是否也会上演同样的历史:“电池不是被用坏的,而是被均衡坏的”。这值得所有BMS厂家提高警惕,均衡方式和均衡策略都需要重视。按华山剑派的说法,气宗练气是为了最后以气御剑,心剑合一。比照起来,主动均衡和被动均衡都可以算剑宗,一个轻剑一个重剑,均衡策略算是气宗。只有气剑同练,才好在市场上华山论剑。

文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    查过程中,应逐步排查,确保每个环节都正常工作。同时,随着技术的发展,热管理系统的设计和控制策略也在不断优化,以适应更高效率和更安全的需求。因此,对于电动汽车的维护和故障排除,了解热管理系统的组成、结构和工作原理至关重要。 ......
    汽车故障诊断中传感器波形分析的应用;  1 示波器的介绍   示波器是用来对电路中电压或电流的波动情况进行测量的工具,它能实时地反应器件的工作情况。在电路分析中通.是用它来测量输入与输出的波形,并由......
    相差大 01故障原因 ①绕组首尾端接错; ②电源电压不平衡; ③绕组存在匝间短路、线圈反接等故障。 02故障排除 ①检查并纠正; ②测量电源电压,设法消除不平衡; ③消除绕组故障。 04 电动......
    电压不平衡;    ③绕组存在匝间短路、线圈反接等故障。 2、故障排除     ①检查并纠正;     ②测量电源电压,设法消除不平衡;     ③消除绕组故障。 4 电动机运行时响声不正常有异响 1、故障......
    。 02 故障排除     ①检查并纠正; ②测量电源电压,设法消除不平衡; ③消除绕组故障。 04   电动机运行时响声不正常有异响   01 故障原因     ①轴承......
    的核心部件,扮演着举足轻重的角色。它不仅是电动汽车正常行驶的控制中枢,更是实现能量管理、故障诊断处理和车辆状态监视等功能的关键所在。本文将带您深入了解整车控制器的基础知识,揭开......
    故障排除 (1)检查并纠正; (2)测量电源电压,设法消除不平衡;(3)消除绕组故障; 四、电动机运行时响声不正常有异响 1、故障原因 (1)轴承磨损或油内有砂粒等异物;(2)转子铁芯松动;(3......
    不好含有杂质; ③轴承与轴颈或端盖配合不当(过松或过紧); ④轴承内孔偏心,与轴相擦; ⑤电动机端盖或轴承盖未装平; ⑥电动机与负载间联轴器未校正,或皮带过紧; ⑦轴承间隙过大或过小; ⑧电动机轴弯曲。 02故障排除......
    运营商实时监控充电桩的状态、进行远程操作和故障排除等。 电动汽车充电桩的类型和功能因厂商和地区而异,可以是交流(AC)充电桩、直流(DC)充电桩或混合充电桩。不同......
    热拆法不当,烧伤铁芯; ④电动机过载或频繁起动; ⑤电动机缺相,两相运行; ⑥重绕后定于绕组浸漆不充分; ⑦环境温度高电动机表面污垢多,或通风道堵塞。 02 故障排除 ①降低电源电压(如调......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>