登上《Nature》,南大团队在二维半导体领域取得新突破!

发布时间:2023-01-13  

2023年1月11日,南京大学王欣然教授、施毅教授带领国际合作团队在全球顶级科研期刊《Nature》上以“Approaching the quantum limit in two-dimensional semiconductor contacts”为题发表研究成果,这是南京大学新年首篇《Nature》。

该科研团队通过增强半金属与二维半导体界面的轨道杂化,将单层二维半导体MoS2的接触电阻降低至42Ω·μm,超越了以化学键结合的硅基晶体管接触电阻,并接近理论量子极限,该成果解决了二维半导体应用于高性能集成电路的关键瓶颈之一。

硅基集成电路在过去60多年一直沿着摩尔定律的预测,朝着更小晶体管尺寸、更高集成度和更高能效的方向发展。然而,由于量子效应和界面效应的限制,硅基器件的微缩化已经接近极限。最新的国际器件与系统路线图(IRDS)预测,在2nm技术节点以下,以MoS2为代表的二维半导体将取代硅成为延续摩尔定律的新沟道材料。

金属-半导体欧姆接触是实现高性能晶体管的关键,特别是在先进工艺节点下。传统硅基器件利用离子注入对接触区域进行高浓度掺杂,通过接触与沟道界面的化学键实现欧姆接触,其接触电阻约为100Ω·μm。由于原子级厚度,二维半导体与高能离子注入工艺不兼容,需要发展全新的欧姆接触技术。与硅相比,二维半导体存在天然的范德华间隙,金属与半导体界面的波函数杂化耦合较弱,因此实现超低接触电阻具有很大的挑战,这也是长期以来限制二维半导体高性能晶体管器件的关键瓶颈之一。

面对上述挑战,合作团队提出了轨道杂化增强的新策略,在单层MoS2晶体管中实现了目前最低的接触电阻42Ω·μm,首次低于硅基器件并接近理论量子极限。团队首先通过第一性原理计算,在半金属Sb中发现了一个特殊的(0112)面,具有较强的z方向原子轨道分布,即使存在范德华间隙仍然与MoS2具有较强的原子轨道重叠,导致金属-半导体能带杂化,大幅提升电荷转移和载流子注入效率。进一步计算发现,该策略对于其他过渡金属硫族化合物半导体(如WS2、MoSe2、WSe2)具有普适性。在实验上,团队发展出高温蒸镀工艺在MoS2上实现了Sb(0112)薄膜的制备,通过X射线衍射和扫描透射电子显微镜验证了Sb薄膜的取向,以及与MoS2之间的理想界面。

基于该工艺,团队制备了MoS2晶体管器件,发现Sb(0112)面与MoS2的平均接触电阻比Sb(0001)面低3.47倍,平均电流密度提升38%,充分证明了Sb(0112)接触对器件性能的显著提升作用。大规模晶体管阵列的统计结果表明Sb (0112)接触的各类性能参数呈现优异的均一特性,有望应用于二维半导体的集成规模化制造。由于接触电阻的降低,20nm沟道长度的MoS2晶体管在1V源漏电压下呈现电流饱和特性,开态电流高达1.23mA/μm,比之前的记录提高近45%,超过了相同节点的硅基CMOS器件,并满足IRDS对1nm节点逻辑器件的性能需求。Sb(0112)接触展现出来的优异电学性能、稳定性和后端兼容性证明该技术有望成为二维电子器件的核心技术。


图1 Sb (0112)-MoS2接触的能带杂化理论(a-b)、高分辨STEM原子成像(c)和接触电阻测量(d-f)


图2 Sb(0112)-MoS2接触电阻和器件电流密度与现有技术的对比

该工作由南京大学、东南大学、南京工业大学、湖南大学和美国斯坦福大学共同完成。南京大学王欣然教授、施毅教授和东南大学王金兰教授为论文共同通讯作者。该研究得到了国家自然科学基金、国家重点研发计划、江苏省前沿引领技术基础研究专项等资助,以及南京大学微制造与集成工艺中心的大力支持。

近年来,王欣然教授课题组聚焦二维半导体材料与器件技术,在大面积单晶材料生长(Nature Nanotech., 16, 1201 (2021); Nature, 605, 69 (2022))、超薄介质集成(Nature Electron., 2, 563 (2019))、三维异质集成(Nature Nanotech., 16, 1231 (2021))等方向取得多项重要进展,2022年荣获第四届“科学探索奖”,并获批国家自然科学基金创新研究群体项目。

封面图片来源:拍信网

文章来源于:全球半导体观察    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    全球首款的清华“天眸芯”,到底是啥,什么水平?;昨天,一颗芯片刷爆朋友圈,它就是由清华团队发布的世界首款类脑互补视觉芯片“天眸芯”(Tianmouc)。时隔3年,清华团队的研究再次登上Nature......
    是借鉴人脑,这种芯片就能够碾压世界上任何一种芯片。IBM的NorthPole就是这样的数字CMOS型的类脑芯片。   类脑芯片主要类型和研发进度,制表丨电子工程世界 IBM的芯片,什么水平?  先说......
    电动机烧坏但热继电器不动作什么原因;电动机已烧坏,而热继电器尚未动作,一般是由以下几种原因引起的: 1、热继电器的额定电流值与电动机的额定电流值不符。应按电动机的额定电流来选择热继电器(不可......
    清华应届硕士炮轰某互联网大厂:恶意低薪2万,白读还倒贴!; 尽管当前就业形势不太乐观,但在招聘市场上,从211和985毕业的学生仍然是炙手可热的香饽饽。那么,这些名校毕业生的薪资到底能达到什么水平......
    以通过变道来避开障碍物。 日产的相关负责人表示:“我们已经了解如何实现 L4(特定条件下的全自动驾驶技术)辅助驾驶系统,但很难明确技术必须成熟到什么水平才能让客户安心使用。因此......
    加湿器用什么水_加湿器不出雾是什么原因;  加湿器用什么水   加湿器最好使用纯净水,纯净水的水分子比较简单,喷洒出去不容易产生污染,并且接触皮肤也比较好,使用过程更加的安全放心,另外......
    不如自己来看看中创新航“顶流”圆柱电池到底是什么水平?量产的可能性有多大? 一、“顶流圆柱电池” 据介绍,“顶流”圆柱电池是基于中创新航One-Stop(OS)极简设计的又一次创新,通过......
    想从事单片机工作,C语言要达到什么水平?;今天我来聊聊从事单片机开发工作,C语言要达到什么样的水平。 我用自己从入门到找到工作的经历来说或许更贴切点。 我是2011年毕业,非本专业,读的......
    所有先进晶圆制造商都停止了与俄罗斯实体的合作,就连ARM也无法将他们的技术授权给俄罗斯的设计师。 为了解决技术被“卡脖子”的问题,俄罗斯当时放下狠话,要自主研发光刻机,并计划在六年内突破芯片核心技术。那么,如今已经过去快三年了,其芯片技术到达了什么水平......
    什么是可控核聚变?可控核聚变到底处于什么水平呢?; 可控核聚变,一定条件下,控制核聚变的速度和规模,以实现安全、持续、平稳的能量输出的核聚变反应。有激光约束核聚变、磁约束核聚变等形式。具有......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>