LVDS 收发器提升汽车照明性能的三种方式

发布时间:2024-08-19  

视觉数据处理是汽车照明应用(例如自适应照明、地面投影和动画)不可或缺的一部分。图像处理和人工智能的进步正在增强这些系统,使其能够以更快的速度实时解密数据。然而,传统的数字信号接口为这些快速发展的系统造成了瓶颈。本文探讨了低压差分信号 (LVDS) 接口电路如何帮助设计人员克服与带宽、信号完整性和功耗相关的汽车照明挑战。

为了创造更安全的驾驶环境,原始设备制造商 (OEM) 和一级供应商正在开发自适应大灯,以动态调整以适应不同的道路和天气条件。最先进的大灯系统结合了外部灯光的动画控制或地面投影警告,但最受欢迎的应用之一是无眩光远光灯,它在检测到行人或汽车时自动调整光线分布。

实现无眩光前照灯的方法不止一种。有些架构采用纯机械方法,而其他架构(如自适应远光灯 (ADB) 系统)则控制 LED 阵列。

在 ADB 前照灯中,前置摄像头可捕捉实时路况数据并自动调整前照灯的照明配置。图 1 描绘了使用 LED 矩阵控制器的 ADB 系统的简化设计。主要模块包括摄像头、电子控制单元 (ECU) 和 LED 驱动模块。高速摄像头通过串行器-解串器接口将数据传输到位于 ECU 板上的微处理器或微控制器 (MCU)。MCU 计算像素配置并将控制数据传输到前照灯处的 LED 驱动模块。

图 1:带 LED 矩阵管理器的自适应头灯

LED 模块可以使用 LED 矩阵控制器(如图 1 所示)或高密度 microLED,具体取决于目标分辨率。添加 LED 可以为自适应控制提供更高的分辨率。系统可以包含数十到数万个 LED。随着 OEM 继续将更高密度的 LED 装入前照灯中,所需的信号速率从每秒几兆位增加到每秒千兆位。由此产生的 ECU 到 LED 板接口必须适应这种带宽的大幅增加。

除了高速之外,该接口还需要稳健的长距离传输。差分信号的以下三个特性使其成为可靠汽车通信的绝佳选择:

· 差分信号方法通过两条互补路径将数据从驱动器传输到接收器。接收器旨在从两个信号之间的电压差(称为差分电压)中提取数据。这使接收器能够抑制传输介质上可能存在的共模噪声。

· 差分信号减少了驱动器和接收器之间的地线偏移的影响,因为数据不参考公共地。

· 以相等且相反的幅度平衡传输数据有助于最大限度地减少电磁干扰 (EMI)。

我将考虑四种常见的差分接口:控制器局域网 (CAN)、RS-422、RS-485 和 LVDS。标准的物理电气特性决定了支持的传输速率、长度、共模容差和功率等因素。表 1 总结了权衡利弊。

表 1:常见差分信号标准摘要

CAN 总线因其低成本、可靠性和极大的灵活性而在汽车行业拥有悠久的历史。CAN 协议由国际标准化组织 (ISO) 11898 标准化,该组织定义了开放系统互连 (OSI) 模型的数据链路层和物理层。仅考虑物理层,它使用平衡差分信号。CAN High 和 CAN Low 构成差分对,其中逻辑高电平信号为 3.5 V,逻辑低电平信号为 1.5 V。由此产生的差分电压摆幅为 2 V。

共模电压范围决定了发射器和接收器接地之间允许的电压差。ISO 11898 要求共模容差至少为 -2 V 至 7 V。考虑到这些电气参数,CAN 总线支持最长 40 米的总线长度和最多 30 个节点。数据速率最高限制为 1 Mbps。

尽管 CAN 是新标准的前身,例如支持高达 10 Mbps 速度的 CAN-Flexible Data Rate,但基于视觉的网络(如 ADB 系统)仍然需要更高的吞吐量。

RS-422(电信行业协会/电子工业联盟 [TIA/EIA] 422)和 RS-485(TIA/EIA-485)收发器也受到数据速率限制。这些规范仅定义物理层。两种标准都使用较大的差分电压摆幅(高达 5 V)来实现 1,200 米的传输距离。需要注意的是,数据速率和传输距离呈反比关系。随着频率的增加,最大允许距离会减小。这些标准还允许较大的共模电压范围,这使它们成为工业应用(例如工厂自动化和控制以及楼宇自动化)的理想选择,但不适合高速视觉网络。

顾名思义,LVDS 具有非常小的差分电压摆幅。这一特性和其他基本电气特性使其能够实现超过 3 Gbps 的信号传输速率、高达 10 米的传输距离和非常低的功耗,这些都是使用自适应 LED 控制的设计的优势。让我们仔细看看 LVDS 标准,以更好地理解其工作原理(图 2)。

图2:点对点LVDS传输

最基本的 LVDS 链路由驱动器、传输介质、100 Ω 终端电阻和接收器组成。LVDS 驱动器接受单端互补金属氧化物半导体 (CMOS) 输入信号并将其转换为 LVDS 输出。驱动器包含一个 3.5 mA 恒流源,负责在终端电阻上产生非常小的 350 mV 差分。输入逻辑电平低或逻辑电平高控制驱动器电流的极性。由于电压摆幅很小,因此可以实现非常快的上升和下降时间,同时功耗也很小。

LVDS 接收器读取终端电阻两端的 ±350 mV 信号,并将其转换回单端 CMOS 输出。接收器的输入为高阻抗,确保电流通过终端电阻。TIA/EIA-644A 还规定最小共模电压范围为 ±1 V;但是,许多可用的 LVDS 接收器支持扩展的共模范围。LVDS 接收器的差分阈值电压为 100 mV,相对于差分输入提供了良好的裕度。

如图 3 所示,在 ECU 和 LED 模块上添加 LVDS 驱动器和接收器对可以解决自适应照明中的瓶颈问题。由于 LVDS 与协议无关,因此它为工程师提供了定义数据链路层的灵活性。在照明中,通常通过 LVDS 物理层传递通用异步接收器收发器 (UART) 等协议。LVDS 是一种非常成熟的标准,具有许多不同的产品和设备功能。德州仪器 (TI) 的产品组合包括数百种 LVDS 设备,涵盖不同的通道数、产品等级、电压和数据速率。对于自适应照明应用,DS90LV011AQ-Q1 和 DS90LT012AQ-Q1 是经济高效的汽车级驱动器和接收器对。TI 的 DS90LVRA2-Q1 是一款汽车级双通道 LVDS 接收器,支持 3.3-V、2.5-V 和 1。8V 逻辑电压,用于与低压处理器实现互操作性。

图 3:采用 LVDS 驱动器和接收器的自适应 LED 控制

自适应大灯正迅速成为整个汽车行业的常见设备。这些系统正在颠覆汽车照明生态系统,需要更高性能的接口标准。LVDS 使这些系统能够通过可靠的低延迟通信实时控制 LED 照明配置文件。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    看到一个屏幕布局图和相关选项。在Windows中,点击“高级显示设置”或“显示适配器属性”打开显示适配器的属性窗口;在Mac中,点击“显示”选项卡,在下方的菜单中选择“显示器”选项。   3. 进入显示适配器......
    于高压的存在,作为核心部分的AC-DC控制器对器件的可靠性与能效比有着较高的要求,所以合理的选择器件能有效降低损耗,提高可靠性,降低EMC。 针对现代适配器的需要,超结MOS采用......
    Energy〉 领域的电源适配器产品以及 LED 照明电源产品的开发。 今年北美规模最大的 LFI 美国国际照明灯具展(Light Fair)将于 2016 年 4 月 26 日至 28 日,在美......
    太按照这个指示自己就可以修复。 然后有一天,显示器彻底坏了。LED指示灯本来应该保持长亮的,现在却不停地闪烁,显示屏也黑了。幸运的是,AC主电源装在外面。这时我看到适配器的LED灯也在闪烁。 市场......
    Selector™ (智能电源选择器),工作于双电源输入(交流适配器和USB)。开关模式充电器工作在高开关频率,可省去散热器并允许使用小尺寸外部元件。该器件可采用独立的USB电源或交流适配器......
    Selector™ (智能电源选择器),工作于双电源输入(交流适配器和USB)。开关模式充电器工作在高开关频率,可省去散热器并允许使用小尺寸外部元件。该器件可采用独立的USB电源或交流适配器......
    与示波器或其他测量仪器相连。   3. 当电源适配器连接到电压探针时,绿色电源指示灯亮起。当测得的电压超出范围时,过载指示灯亮起并发出报警。   4. 将示波器或其它测量仪器的衰减比设置为10:1,将示波器的......
    南芯科技布局全功率段PD快充,推出重磅新品PFC控制芯片SC3201; 【导读】随着现在百瓦大功率适配器的普及,传统反激架构已不能满足日益增加的大功率适配器的高开关频率、高功率密度、高效......
    上面标注的文字。 图6:蓝牙低功耗USB适配器放大图。 图7显示主单元插入配套的USB充电器中。 图7:主单元插入配套的USB充电器中。 图8是卸下主单元后充电器的内视图,从图中可以看到,充电......
    本电脑提供快速充电功能,还能够满足家庭场景中对高功率设备的充电需求,例如电视、电动工具、游戏机、LED灯和投影仪等。借助INN700D140C和INN700DA140C,方案在提高效率的同时大大减小适配器的......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>