两电池供电时的电源切换设计

发布时间:2024-03-05  

以下文章来源于面包板社区 ,作者wuliangu

本文引用地址:


问题现象:如下图,大电池BAT1和小电池BAT2一起给系统供电,当用到低电状态拔下大电池时,系统直接关机。


客户要求:当拔掉大电池后,系统还能工作一段时间。

问题分析:从电路来看,大电池和小电池是并联在一起的,它们充电一起充,放电一起放,到低电状态时两种电池都电压较低,所以系统供电不足直接关机。

设计思路:为符合客户要求,设计成当大电池接上时,就让小电池不供电,就是说当放电时只有大电池放电,当充电时两者都能充电。

设计要求:从板布局空间和生产成本上要求电路尽量简单,所用元器件量最少。


设计电路1:

(1)如下图,大电池接口用的是刀片接口座,从上往下刀片对应原理图符号,第一片对应符号上的1、4,中间片对应符号上的3、6,第三片对应符号上的2、5。


(2)如下图是大电池及电池上的接口电路板,两个“+”号是连在一起的。



(3)没大电池时,刀口座上的第一片和中间片不会短路,即中间片是没电的,当接上电池后中间片有电压,应用这个功能来判断是否有大电池接入。


(4)在小电池供电上增加一个开关线路,用刀口座中间片来控制。尽量用最少元件的前提下,如下图新增一个PMOS管Q4,G极串一个电阻R86到刀片座中间片,当大电池接入时Q4的G极为高电平,此时Q4不导通,所以小电池不供电;当大电池拔掉时Q4的G极由R87拉为低电平,这时Q4导通,所以小电池可以正常给系统供电,由于大电池的存在,小电池没怎么耗电,所以可以正常工作一段时间。另外在充电中VBAT在给大电池充电的同时也可以通过Q4上的二极管导通过去给小电池充电,值得注意的是由于二极管有压降,所以小电池是充不满电的,但还是可以符合没大电池时可以工作一段时间。


上面的描述看起来还可以,但实际验证中,该电路行不通,那为什么呢?

原因一,在两个电池都为4.0V以上时,拔插大电池确实可以正常控制Q4的开断,但随着大电池的耗电,电压在逐渐变低,而小电池的电压还没变化,直到G极的电压小于小电池电压很多时,这时Q4就失去了关断作用,所以小电池也同时放电。


原因二,电池的静态电流变大了。

综上原因,电路1不可用。


设计电路2:

(1)如下图增加一个NMOS管Q3和一个三极管Q5,当没有大电池时Q3的G极由R88上拉到小电池电压为高电平,同时Q5也未开启,所以Q3导通,小电池给系统供电;当大电池接入时,Q5开启,Q3的G极被拉为低电平,Q3不导通,所以小电池不给系统供电。


另外在充电中VBAT在给大电池充电的同时也可以通过Q3上的二极管导通过去给小电池充电,值得注意的是由于二极管有压降,所以小电池是充不满电的,但还是可以符合没大电池时可以工作一段时间。

实际验证中,该电路行不通,拔掉大电池系统立马关机,如小电池电压是3.9V,拔掉电池后,电压经过Q3会变成2.9V。为什么呢?

希望读者可以去思考下原因。


设计电路3:

(1)如下图还是使用PMOS管Q4,但用两个三极管Q5和Q6来控制Q4的G极,当没有大电池时,Q5未开启,Q6由于R89上拉到小电池电压变为高电平,所以Q6开启,这时Q4的G极被拉低,所以Q4导通,小电池给系统供电;当大电池接上后,Q5开启,Q6的B极被拉低,Q6不开启,Q4的G极由R88拉到高电平,所以Q4不导通,小电池不给系统供电。


在充电中VBAT在给大电池充电的同时也可以通过Q4上的二极管导通过去给小电池充电,值得注意的是由于二极管有压降,所以小电池是充不满电的,但还是可以符合没大电池时可以工作一段时间。

实际验证中,该电路可以使用,但是R89这颗电阻和Q6的1、2脚构成一回路,静态电流较大,将R89的阻值增加到47K,静态电流减小很多,若再往上增加,则该电路开启不了,所以说只能加到47K左右。小电池为3.9V时,电流在80微安左右。能否还可以再将电流降点呢?

这里将Q6改成普通的三极管3904,如下图R87和R89构成电阻分压,这样就可以调大R89的阻值了,更改后静态电流降到40微安左右。


设计电路4:

(1)如下图用刀口座中间片控制三极管Q6,然后用主控芯片来检测是否有大电池接入,有的话,那就将电池电量检测的低电阀值自动降低,然后小电池还是可以工作一段时间。


综上,设计电路4是最经济的。这里大电池的容量是1850mAh,小电池的容量是200mAh,若系统工作电流在200mA之内该电路还是较实用的,但若系统工作电流在800~900mA,那么就算电源供电能切换过来,这小电池也带不动,因为瞬间就被系统将电压拉得很低了,可能工作个几秒钟就没了。所以一个电路的设计要考虑的因素很多。还是要多看些电路方面的知识来提高自己的资源储备。


文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    五线制A B C N PE;农村TT系统三相四线制,需要自己设置地线。 双电源转换开关接线图 说明:使用双电源转换开关来控制主电源和备用电源......
    变压器倒闸操作详解(2024-11-08 16:52:50)
    .将#2主变10kV侧91B开关QK转换开关由就地控制切换至远方控制。 这样就把#2主变转到了热备用状态。接着合上主变电源侧开关(根据调度指令合上112或11M开关,此处合上11M开关......
    日前宣布其PI3741 DC-DC电源转换模块成功装配于泰科动力(Tritek Power)旅行电动自行车中,有效提升了电池供电量并减少电池包的热耗散,使旅行电动自行车行驶里程更长,更可靠。 作为旅行电动自行车备用电......
    包的可靠性也得以提升。 据Vicor公司技术支持工程师余训龙先生介绍,PI3741之所以具有出色的高效率是因为它采用了Vicor公司专有的片上零电压开关(ZVS)技术。我们知道,要想让电源转换方案的整体尺寸更小,我们就必须提高开关电源......
    有关的其他问题。 如上所述,基于 InnoSwitch3 QR 反激式转换开关 IC 的更多集成方法,能够让设计者开发出优雅、高效的电源转换器,获得氮化镓开关的性能优势,同时......
    显示了-48 VDC的创建和分配方式。电信直流电源系统通常包括:国家电网系统、柴油发电机、自主式交流自动切换开关(ATS)、配电系统、太阳能电池板或电路板、控制器和充电器、整流器、串联布置的备用电池,以及......
    日至12日在金沙会展中心(Venetian Expo)的CES 2024展位(51452)上重点展示其为全球清洁能源生活方式整合并网和离网解决方案的承诺。 通过太阳能集成和转换开关实现无缝能源转换......
    直流系统图讲解(2024-12-16 17:45:18)
    、两路电源的指示灯和交流 故障告警信号输出的空接点。转换开关 QK 有 4......
    布局上轻松添加和删除相位。这些优势有助于电源转换器设计人员提高电源转换效率。ADI公司将继续应对这些难题和类似的挑战,充分运用电源架构方面的丰富专业知识,面向5G市场开发更多的-48 VDC高功率转换......
    类芯片、参考基准类芯片,功率开关类芯片、电池管理类芯片等品类,以及一些特定应用场景的电源类产品。通常把电源转换类芯片根据芯片架构分为DC-DC与LDO(low dropout regulator)两种......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>