基于机智云物联网平台的温湿度和光照强度获取

发布时间:2023-11-16  

该设计采用esp8266烧写机智云固件。并且esp8266与stm32进行通信,则stm32可以通过esp8266与机智云服务器进行数据交互,而机智云服务器可以和机智云app进行数据交互。为此,实现stm32通过esp8266可以与机智云app进行数据交互。


stm32作为MCU传感器进行数据交互,得到传感器采集的数值,所以完成的是传感器和app的数据交互。由于本次实验增加了对光照强度的采集,所以又增加了一个三色RGB灯外设。通过机智云app可以调节RGB灯的光强,以此来模拟光照强度的变化。整个设计的传感器数据流向如下图所示:


d07b2dea-46c9-11ee-8e12-92fbcf53809c.png

另外,对于用机智云app调节RGB灯的光强的数据流向如下图:


d0a019ca-46c9-11ee-8e12-92fbcf53809c.png

01

传感器的测试

本次设计利用STM32CubeMX进行开发,代码设计过程分模块进行,分别编写测试用例验证各模块的功能,包括oled模块、按键模块、dht11模块、光敏电阻模块、rgb模块。1、oled模块① 接线:

d0b173be-46c9-11ee-8e12-92fbcf53809c.png

②代码编写:


本次设计中oled采用硬件SPI2驱动,STM32CubeMX的设计如下图:

d0bb48da-46c9-11ee-8e12-92fbcf53809c.pngd0cf747c-46c9-11ee-8e12-92fbcf53809c.png

d0f15290-46c9-11ee-8e12-92fbcf53809c.png

利用STM32CubeMX生成的SPI主要代码如上所示。在生成的SPI代码上进一步编写oled.c和oled.h文件。


oled.c封装了以下的函数:



d129448e-46c9-11ee-8e12-92fbcf53809c.png

测试函数:


int main(void){ HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI2_Init(); OLED_Init(); OLED_ShowString(0, 0, "wait for set esp8266,press key1 to set esp8266 with AIRLINK_MODE");}


③测试用例实验结果:

d1490fee-46c9-11ee-8e12-92fbcf53809c.png

由上图可知,oled模块的显示函数能够正确显示。


2、按键模块


①接线:

d15a5f88-46c9-11ee-8e12-92fbcf53809c.png


KEY_R0接地,KEY_L0和KEY_L1可以用于检测按键状态。对应的引脚为:

d15ecc76-46c9-11ee-8e12-92fbcf53809c.png

②代码编写:


STM32CubeMX设计如下:

d16d5750-46c9-11ee-8e12-92fbcf53809c.png

PC11设置为输出模式,PC10和PB5设置为输入模式。


Key.c封装了以下函数:


void key_init(void){ HAL_GPIO_WritePin(KEY_COM_GND_GPIO_Port,KEY_COM_GND_Pin,GPIO_PIN_RESET);}
void Test_key(void){ if(HAL_GPIO_ReadPin(KEY1_GPIO_Port, KEY1_Pin)==GPIO_PIN_SET) { OLED_ShowString(0,0,"key1_up"); } else { OLED_ShowString(0,0,"key1_down"); } if(HAL_GPIO_ReadPin(KEY2_GPIO_Port, KEY2_Pin)==GPIO_PIN_SET) { OLED_ShowString(0,10,"key2_up"); } else { OLED_ShowString(0,10,"key2_down"); } OLED_Refresh_Gram();}

测试用例:


int main(void){ MX_GPIO_Init(); key_init(); while(1) { Test_key(); }}

③测试用例实验结果:


d1917f68-46c9-11ee-8e12-92fbcf53809c.png

由图中可以看出,按键一被按下时显示key1_down和key2_up,与理论相符。


3、dht11模块


①接线:


d1f40f98-46c9-11ee-8e12-92fbcf53809c.png

②代码编写:


由于dht11的数据引脚有时需要作为输入,有时需要作为输出,所以不在STM32CubeMX设置。


Dht11.c主要封装了以下函数:


d20a6126-46c9-11ee-8e12-92fbcf53809c.png

这里的us延时并没有使用定时器来产生,而是用系统时钟来实现:


void delay_us(uint32_t us){ uint32_t delay = (HAL_RCC_GetHCLKFreq() / 4000000 * us); while (delay--) { ; }}

测试用例:


int main(void){ HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI2_Init(); OLED_Init(); while(1) { Test_dht11(); }
void Test_dht11(void){ char txt[16]; while(1) { DHT11_Read_Data(&humidity_integer,&humidity_decimal,&temperature_integer,&temperature_decimal); sprintf(txt, "temp:%d.%d", temperature_integer,temperature_decimal); OLED_ShowString(0,0,txt); sprintf(txt, "humi:%d.%d", humidity_integer,humidity_decimal); OLED_ShowString(0,10,txt); OLED_Refresh_Gram(); }}

③测试用例实验结果:



d2222ba8-46c9-11ee-8e12-92fbcf53809c.png

由上图可以看出,温度为23.3℃,湿度为53.0%,湿度的小数为0,与理论相符。


4、光敏电阻模块


①接线:


d22aaa44-46c9-11ee-8e12-92fbcf53809c.png②代码编写:


STM32CubeMX设置ADC1的IN0如下:

d2381f12-46c9-11ee-8e12-92fbcf53809c.png

Stm32Rct6的ADC是12位的,这里没有更改的选项,则ADC读取的最大值是2^12=4096。


这里采样时间Sampling Time选择1.5个周期。ADC采样时间 = (采样周期+12.5周期)* 1/ADC时钟频率,这里ADC采样时间=(1.5+12.5)*1/12 = 1.167us。light_check5506.c主要封装以下函数:


void light_check5506_init(void){ HAL_ADCEx_Calibration_Start(&hadc1); HAL_Delay(200);}
uint32_t light_check5506_getinitvalue(void){ HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1,50);//ÏÞʱ50ms return HAL_ADC_GetValue(&hadc1);}
uint32_t light_check5506_get0to100value(void){ //°µ-->ÁÁ£º0~100 uint32_t value; value=light_check5506_getinitvalue(); value=4096-value;//ÔʼÊý¾ÝÊÇÔ½°µÊý¾ÝÔ½´ó value=(value*100/4096);//»¯Îª0~100µÄÊý,±ØÐëÏȳËÒÔ100ÔÙ³ý£¬ÒòΪȫ²¿ÊÇÕûÊý return value;}
void Test_5506(void){ uint32_t value; char txt[16]; while(1) { value=light_check5506_get0to100value(); sprintf(txt, "light(0-100):%d", value); OLED_ShowString(0,0,txt); OLED_Refresh_Gram(); }}

测试用例:


main(void){ HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI2_Init(); MX_ADC1_Init(); OLED_Init(); light_check5506_init(); while(1)` { Test_5506(); }}

③测试用例实验结果:

d250d214-46c9-11ee-8e12-92fbcf53809c.png

将ADC读取的值归一化到0~100后光照强度的数值为18。


5、rgb模块


①接线:


d272b654-46c9-11ee-8e12-92fbcf53809c.png②代码编写:


STM32CubeMX设置TIM8的三个通道如下:


d2981908-46c9-11ee-8e12-92fbcf53809c.png

计数周期Counter Period设置为255,这是为了便于查找RGB颜色表进行颜色设置,占空比Pulse设置为50%Rgb.c封装了以下函数:



void rgb_init(void){ HAL_TIM_PWM_Start(&htim8,TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim8,TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim8,TIM_CHANNEL_3);}void Test_rgb(void){ rgb_setpwm(10.0,100.0,200.0);}void rgb_setpwm(uint8_t pwm_r,uint8_t pwm_g,uint8_t pwm_b){ __HAL_TIM_SET_COMPARE(&htim8, TIM_CHANNEL_1,pwm_r); __HAL_TIM_SET_COMPARE(&htim8, TIM_CHANNEL_2,pwm_g); __HAL_TIM_SET_COMPARE(&htim8, TIM_CHANNEL_3,pwm_b);}

测试用例:



main(void){ HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_SPI2_Init(); MX_TIM8_Init(); rgb_init(); OLED_Init(); while(1)` { Test_rgb(); }}

③测试用例实验结果:


d2b552de-46c9-11ee-8e12-92fbcf53809c.png

由上图可知RGB灯被点亮。

02

通过esp8266实现数据上传和数据回传

在进行数据上传与数据回传之前,首先进行用于打印数据的串口1的设置和用于stm32与esp8266通信的串口2。串口1:

d2bea6cc-46c9-11ee-8e12-92fbcf53809c.pngd2d0675e-46c9-11ee-8e12-92fbcf53809c.png


串口1设置PA9和PA10分别作为TX和RX,波特率为115200,不使能中断。


串口2:

d2e17bac-46c9-11ee-8e12-92fbcf53809c.pngd2f6c746-46c9-11ee-8e12-92fbcf53809c.pngd32cd6f6-46c9-11ee-8e12-92fbcf53809c.png

串口2设置PA2和PA3分别作为TX和RX,波特率为9600,使能中断。


1、数据上传:温湿度数据、关照强度数据


①主要代码


void userHandle(void){ DHT11_Read_Data( & humidity_integer, & humidity_decimal, & temperature_integer, & temperature_decimal); currentDataPoint.valuehumidity = humidity_integer; currentDataPoint.valueLight_intensity = light_check5506_get0to100value(); currentDataPoint.valueDHT11 = temperature_integer + 0.1 * temperature_decimal; }

在userHandle(void)中添加温湿度数据的采集以及光照强度的读取。userHandle()是main函数中while循环的内容。


d33b8692-46c9-11ee-8e12-92fbcf53809c.png

由上图可以看出,userHandle对于用户来说是最顶层的,数据在userHandle中采集,依次经过gizCheckReport判断是否上报当前状态的数据、gizDataPoints2ReportData完成用户区数据到上报型数据的转换、gizReportData将转换后的上报数据通过串口发送给 WiFi 模块。


②设计结果:


首先确保esp8266和手机都已经连接到同一个网络,这里用电脑作为这个网络。


d342526a-46c9-11ee-8e12-92fbcf53809c.png

由上图可知手机和esp8266已经连接上了电脑。机智云app连接上esp8266后得到上传来的数据:


d353a84e-46c9-11ee-8e12-92fbcf53809c.pngd3769034-46c9-11ee-8e12-92fbcf53809c.png

Oled上的数据是stm32收集的,上图的数据是机智云app通过esp8266收到的,两者一致,说明数据交互是正确的。2、数据回传:RGB三数值


①主要代码


int8_t gizwitsEventProcess(eventInfo_t * info, uint8_t * gizdata, uint32_t len){ uint8_t i = 0; dataPoint_t * dataPointPtr = (dataPoint_t *)gizdata; moduleStatusInfo_t * wifiData = (moduleStatusInfo_t *)gizdata; protocolTime_t * ptime = (protocolTime_t *) gizdata; # if MODULE_TYPE gprsInfo_t * gprsInfoData = (gprsInfo_t *)gizdata; # else moduleInfo_t * ptModuleInfo = (moduleInfo_t *) gizdata; # endif if ((NULL == info) || (NULL == gizdata)) { return -1; } for (i=0; i < info->num; i++) { switch(info->event[i]) { case EVENT_LED_R: currentDataPoint.valueLED_R = dataPointPtr->valueLED_R; GIZWITS_LOG("Evt:EVENT_LED_R %dn", currentDataPoint.valueLED_R); rgb_setpwm(currentDataPoint.valueLED_R, currentDataPoint.valueLED_G, currentDataPoint.valueLED_B); break; case EVENT_LED_G: currentDataPoint.valueLED_G = dataPointPtr->valueLED_G; GIZWITS_LOG("Evt:EVENT_LED_G %dn", currentDataPoint.valueLED_G); rgb_setpwm(currentDataPoint.valueLED_R, currentDataPoint.valueLED_G, currentDataPoint.valueLED_B); break; case EVENT_LED_B: currentDataPoint.valueLED_B = dataPointPtr->valueLED_B; GIZWITS_LOG("Evt:EVENT_LED_B %dn", currentDataPoint.valueLED_B); rgb_setpwm(currentDataPoint.valueLED_R, currentDataPoint.valueLED_G, currentDataPoint.valueLED_B); break; } }}

在gizwitsEventProcess中的EVENT_LED_R、EVENT_LED_G、EVENT_LED_B分别添加对对RGB三个PWM的赋值,赋值之后使其立即生效。


d3932de8-46c9-11ee-8e12-92fbcf53809c.png

protocolIssuedProcess被 gizwitsHandle 调用,接收来自云端或 app端下发的相关协议数据。ACTION_CONTROL_DEVICE进行“控制型协议”的相关处理,gizDataPoint2Event根据协议生成“控制型事件”,并进行相应数据类型的转化转换,gizwitsEventProcess是位于数据回传过程中的最底层,根据已生成的“控制型事件”进行相应处理。


②设计结果:


首先确保esp8266和手机都已经连接到同一个网络,这里用电脑作为这个网络。


d342526a-46c9-11ee-8e12-92fbcf53809c.png

由上图可知手机和esp8266已经连接上了电脑。机智云app设置RGB三个PWM数值,得到oled上的数据为:


d3b2eb7e-46c9-11ee-8e12-92fbcf53809c.pngd3baac9c-46c9-11ee-8e12-92fbcf53809c.png

由上图可知,右图为机智云app设置的三个PWM数值,左图再oled上为同样的数值,说明数据交互正确。

03

总 结

①通过这次设计接触了STM32CubeMX这个软件,相比与之前的标准库,STM32CubeMX生成的Hal库不仅封装度更高,而且更有利于开发者进行快速开发,而且在本次实验中机智云生成的代码也是基于Hal库的,这说明以后对于stm32来说,会越来越趋向于Hal开发。②官网永远是对解决问题的最好地方,机智云的官方文档给了我极大帮助。


③esp8266的烧录对于供电要求十分苛刻,导致多次烧录都失败了,所以在制pcb的时候加上了esp8266的烧录接口,以及GPIO的接地开关,还有复位电路。PCB扩展板图如下:

d3da52e0-46c9-11ee-8e12-92fbcf53809c.png


④stmRct6板的供电十分差,由于刚开始只是接了ST-LINK进行供电,导致dht11和oled一起使用时dht11的VCC口只有2.6V,进而使得dht11通信一直不成功,这也说明了一切先从电源管理开始,确保供电没问题再查找软件问题。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    的目的,再就是可以增加调节功能,以此满足用户在种植培育不同作物时,需要不同的最佳湿度状况的发生。 参考文献 谢永超,杨利.基于STC89C52单片机土壤温湿度检测器的设计[J].计算......
    功能是实现软件的执行,并对外部的器件、模块进行控制。该系统主要由DHT11温湿度检测电路,烟雾浓度检测电路,1602显示电路组成。 图2 硬件电路 三.软件设计 系统的软件逻辑清晰,首先先进行一次系统初始化,开始进行温湿度检测......
    设计 本设计所采用的STM32F103C8T6是以Cortex-3为核心的单片机,它的功能是实现软件的执行,并对外部的器件、模块进行控制。该系统由LCD显示模块,温湿度检测模块,光敏电阻模块,湿度检测......
    记录、互联、共享、增效——Fluke全新温湿度监测方案发布!;美国福禄克公司5月4日重磅发布全新温湿度监测产品系列,Fluke 972系列手持式温湿度检测仪及Fluke 961系列USB型温湿度......
    一种基于STM32和LabVIEW的无线温湿度检测系统的设计;引言 日常生活中,温度和湿度是两个很重要的物理参数,它不但与人们的身体健康密切联系,而且与科学研究、园林技术、仓库管理、机房......
    内的主要电路有单片机最小系统电路,气压检测电路、温湿度检测电路、震动检测电路、显示电路、无线通信电路、电源电路等。 图2 硬件电路 三.软件设计 系统的软件逻辑清晰,首先先进行一次系统初始化,此时就开始进行温湿度检测和压力检测......
    控制器控制电源电路输出线路的通断来调控整个喂水系统。 温湿度检测调节系统高温高湿影响鸽子的热调节,加剧了高温的不良反应,破坏鸽子的热平衡。高温的时候,鸽子体内靠蒸发散热,而蒸发散热正比于鸽子体内蒸发面皮肤和呼吸道水汽压与空气水汽压之差,舍内空气湿度......
    阀连接塑料水管上端续接到一个小型水箱,下端放置喝水水槽,继电器的控制端口连接至控制器的PA2口。电磁阀的供电电源采用220VAC转12VDC的电源电路,由微控制器控制电源电路输出线路的通断来调控整个喂水系统。 温湿度检测......
    基于STM32单片机的老人监护系统设计;一.系统设计 本次老人监护系统的设计使用STM32单片机作为控制中心,通过DHT11进行温湿度检测,温度超限则通过继电器调湿通过MQ-2进行烟雾检测,烟雾......
    监控及控制 的全自动远程智能调节系统。它通过控制加热器及制冷器(通风)对温度进行自动调节,同时通过控制自动加湿机及除湿机的工作自动调节环境的相对湿度,使环境的温度和湿度达到达到适宜的范围。 整个大棚的温湿度检测......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>