pHEMT功率放大器的有源偏置解决方案

发布时间:2023-10-30  

假晶高电子迁移率晶体管()是耗尽型器件,其漏源通道的电阻接近0 Ω。此特性使得这些器件可以在高开关频率下以高增益运行。然而,如果栅极和漏极偏置时序不正确,漏极沟道的高电导率可能会导致器件烧毁。本文探讨耗尽型射频(RF)放大器的工作原理以及如何对其有效偏置。耗尽型场效应晶体管(FET)需要负栅极电压,并且必须小心控制开启/关断的时序。文中将介绍并比较固定栅极电压和固定漏极电流电路。我们还将仔细研究这些偏置电路的噪声和杂散对RF性能有何影响。

本文引用地址:

引言

图1显示了耗尽型pHEMPT RF放大器的简化框图。流经器件的RF信号路径是从栅极到漏极,交流耦合电容将RF信号与漏极和栅极上的直流偏置电压去耦。主电源电压通过电感施加到FET晶体管的漏极。

1698401820473652.png

图1.耗尽型RF放大器的简化架构。

耗尽型器件的一个重要特性是,当栅极电压等于0 V时,漏源电阻接近0 Ω。因此,要操作这种器件,必须对栅极施加负电压。在图1中,该电压通过片上电感施加。

这种偏置方法的一个缺点是,两个电源不能同时开启。在栅极偏置电压之前施加漏极偏置电压会导致漏极电流突然增加,从而很快烧毁器件。因此,必须首先施加负栅极偏置电压来夹断沟道。开启和关闭放大器时,应使用表1中的步骤。

表1.放大器步骤

1698401802890869.png

实践中可以跳过夹断步骤。例如,如果知道正常工作的最终栅极电压,那么可以立即施加该电压,而无需经过夹断步骤。

固定栅极电压偏置

图2显示了耗尽型RF放大器建立并维持固定栅极电压的电源管理电路。它使用开关稳压器、低压差(LDO)稳压器和负载开关来产生漏极电压。栅极电压由 ADP5600 产生,该器件包含电压逆变器和LDO稳压器。漏极电流由负电压LDO稳压器的反馈电阻设置。为确保安全的电源时序,开关稳压器的使能(EN)引脚与负电压发生器的电源良好(PGOOD)信号相连。这确保了负栅极电压始终出现在漏极电压之前。

1698401715367442.png

1698401695211643.png

图2.固定栅极电压偏置。

此电路的主要缺点是没有考虑RF放大器VGATE与IDRAIN关系的器件间差异。漏极电流的器件间差异(假设栅极电压固定)可能很大,导致每个电路具有不同的漏极电流。漏极电流差异通常会影响压缩(OP1dB)和三阶交调失真(OIP3)(增益也会受到影响,但程度较小)。这种方法的好处之一是漏极电流将根据RF输入功率和RF输出功率的变化而增加或减少。因此,如果RF输入功率较低,功耗也会较低,反之亦然。

有源偏置控制

有源偏置控制是另一种方法。此技术不是固定栅极电压,而是固定漏极电流。图3中,有源偏置控制器通过测量漏极电流并改变栅极电压来调节漏极电流,使该电流即使在不同的RF输入条件下也能保持固定。此电路由 LT8608 降压稳压器和 HMC920 有源偏置控制器组成,后者可支持3 V至15 V的漏极电压和高达500 mA的总漏极电流。

1698401532686132.png

1698401516646012.png

图3.固定漏极电流偏置(有源偏置控制)。

HMC920内部的高电压、高电流线性稳压器(LDOCC引脚)可产生3 V至15 V的正电压和高达500 mA的电流。其输出通过内部MOSFET开关连接至VDRAIN端口,用于控制电源时序。为了设置所需的漏极电压,必须使用公式1调整LDO稳压器的反馈电阻R5和R8:

1698401501205448.png

其中,VDRAIN是所需的漏极电压值,IDRAIN是所需的漏极电流。常数0.5是内部MOSFET开关的RDS(ON)值。

内部电荷泵产生负电压VGATE。通过读取RSENSE处的电压,控制器检测漏极电流并改变VGATE处的电压。要设置漏极电流,必须使用公式2改变RSENSE(R4和R19):

1698401481588709.png

当通过施加电源电压(VDD)开启HMC920时,会有一个信号发送至EN引脚以启动控制环路。VDRAIN最初会短接到地,以强制将其设为零。同时,VGATE处的电压最初会被拉低至最小电压VNEG。然后,VDRAIN将提高至设定的漏极电压值。RSENSE上将产生电压降,这会导致控制器改变栅极电压。关断期间,会有一个逻辑低电平信号发送至EN引脚。VGATE将降低至VNEG以切断放大器,VDRAIN处的电压将降至零。VGATE处的电压最终将达到零。此周期遵循正确的电源时序,以确保耗尽型放大器安全运行。它还具有过流和欠流报警、短路保护、功率折返等安全特性。HMC920数据手册中详细解释了该偏置控制器的其他安全机制。

该偏置控制器用作 ADL8106 宽带低噪声放大器的电源管理解决方案。ADL8106的工作频率范围为20 GHz至54 GHz,标称漏极电压为3 V,静态漏极电流为120 mA。图4和图5显示了相关的开启和关断波形。

1698401467235632.png

图4.开启时的电源时序波形。一旦施加VDD,EN变为高电平就表示控制环路启动。首先开启VGATE,然后开启VDRAIN

1698401454954641.png

图5.关断时的电源时序波形。当VDD被移除时,EN变为低电平。VGATE将再次降至最小电压VNEG,VDRAIN将降至零。然后,VGATE最终将达到零。

噪声和杂散抑制

RF放大器RF输出端的杂散和噪声水平将取决于HMC920的输出噪声和杂散,以及放大器的电源调制比(PSMR)。图6显示了开关稳压器(LT8608)输入端以及VDRAIN和VGATE输出端口的PSRR曲线。图7和图8显示了VGATE和VDRAIN电压的输出频谱。基于ADL8106的PSMR,这些图中还包含了显示最大允许输出噪声和杂散的迹线。电源管理电路的输出噪声和杂散必须低于这些水平,以确保放大器的性能不会因电源管理电路而降低。有关该参数的理论、测量和计算的更深入解释,请参阅 优化信号链的电源系统 系列文章。

1698401436462342.png

图6.LT8608 + HMC920的电源电压抑制比(VDD = 5 V,VDRAIN = 3 V,IDQ = 120 mA,VGATE = –0.64 V)。

1698401423796010.png

图7.HMC920的VGATE和VDRAIN输出频谱以及ADL8106的最大允许噪声限值。

1698401410210386.png

图8.HMC920的VGATE和VDRAIN输出频谱以及ADL8106的最大允许噪声限值。

使用外部负电源操作HMC920

在前面的示例中,HMC920的内部负电压发生器用于生成负栅极电压。此外也可以使用外部负电源,如图9所示。在这种情况下,ADP5600(逆变器和负LDO稳压器)用作产生栅极电压的负电源。与使用内部负电压发生器相比,其结果是噪声系数略低且增益略高。

1698401388620805.png

图9.外部VNEG模式下的ADL8106和HMC920框图。

1698401374275780.png

图10.使用HMC920的ADL8106在内部负电压发生器模式和外部负电压发生器模式下的噪声系数。

1698401362315299.png

图11.使用HMC920的ADL8106在内部负电压发生器模式和外部负电压发生器模式下的增益。

该模式下的实际噪声性能仍然取决于所用外部负电压发生器所产生的输出噪声。从图7和图8中可以看出,在外部VNEG模式下使用HMC920也会产生噪声杂散,这些杂散仍低于最大允许电压纹波限值。要利用此模式,必须将VNEGFB引脚短接至地以禁用负电压发生器的反馈控制。对于增强型放大器(正栅极电压),VNEGFB和VGATEFB引脚都必须接地。

结语

耗尽型GaAs放大器因其宽带宽和高动态范围而广泛用于RF应用。但是,此类放大器需要负偏置电压,并且必须小心控制其电源时序。可以使用固定的负栅极电压来偏置这种放大器。其好处是电流消耗是动态的,随着RF输出电平而变化。本文介绍的电路使用固定漏极电流,产生低噪声漏极和栅极电压并安全控制其时序,这些电压不会降低RF放大器的额定性能。这样器件间的性能差异会更小,因为每个器件都以相同的漏极电流运行。然而,这种方法的一个缺点是漏极电流是固定的,不随RF功率水平而变化。在决定固定漏极电流水平时应谨慎考虑,它必须足够高才能支持所需的最大输出功率水平,但又不能过高以至于导致电流浪费。虽然可以使用外部负电源代替HMC920的内部负电压发生器,但对噪声的改善作用微乎其微。

文章来源于:电子产品世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    来更加带感。 其实除了硬件之外,可调才是这套系统的厉害之处。理想汽车是首家开放底层调音能力的车企,增益、延时、均衡器和空间混响等特性全面开放调节功能,一共能够设置196个可调参数,想怎么调就怎么调,也就......
    功放机的混响怎么调_功放机声音小怎么维修;  功放机的混响怎么调   一般来讲混响是回音而不是真正的混响。由于房间大小、音量高低、声学环境、男声女声等原因所以没有固定的调法。   1、用于......
    功放机的线怎么插_功放机的sr和fr是什么;  功放机的线怎么插   1、分别将音箱黑色的线接功放的红色接口上,黑白两色线接功放的黑色插口上。如果方便把音箱后盖打开的话,最好......
    失真现象消失为止。 通道推子 接下来的增益调节步骤就是调音台的推子了。很明显,使用推子来平衡麦克风/线路的前级功放是非常重要的。在这里,我可以向你推荐一种比较好的调节方案: 将推子置于最大电平的75%处。然后,慢慢......
    输出功率; D、喇叭阻抗与功率大小; E、功放芯片增是否是固定值(有些功放芯片的增益是可以通过外部电路调节); F、功放芯片供电电源取值大小,假设A、B、C、D、E点的值固定后为10%失真的标准最大功率输出,此时降低功放......
    对系统的干扰;CS5290E具有独特的防破音(NCN)功能,可根据输出信号的大小自动调整功放的增益,实现更加舒适的听觉感受。 CS5290E的外围只有低成本的阻容器件,在以锂电池供电的移动式音频设备中,CS5290E是理想的音频子系统的功放......
    质甚佳。但外围线路的设计和外围元件的选用对IC音质影响较大,故本功放采用如图3-42所示的电路。   1.采用Gm控制音量,进入音量电位器接在IC3(NE5532)的增益控制点上,改变......
    ,即Noise Gain=1+R2/R1,其中R1为输入电阻阻值,R2为反馈电阻阻值。增益带宽积为定值,意味着闭环运放的增益和带宽是成反比的,增益越大,其带宽就越低,因此选型的时候要根据实际应用中的增益......
    作用是降低输入电流(另一种办法是降低功放电路的增益)。 然后单片机引脚P1.0输出一串以音频信号来变换频率的PWM,便可通过功放电路来驱动喇叭播放一段音乐。 程序: //《最浪漫的事》 unsigned char......
    功放机怎么连接电视_功放机怎么连接电脑;  功放机怎么连接电视   功放机连接电视的操作方法如下:   1、需要有一根同轴线或者一条光纤线。将同轴线(或光纤线)接到电视机和功放的......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>