【导读】10月25日,英飞凌科技宣布完成收购氮化镓系统公司(GaN Systems)。这家总部位于加拿大渥太华的公司,为英飞凌带来了丰富的氮化镓 (GaN) 功率转换解决方案产品组合和领先的应用技术。已获得所有必要的监管部门审批,交易结束后,GaN Systems已正式成为英飞凌的组成部分。
英飞凌科技首席执行官Jochen Hanebeck表示,“氮化镓技术为打造更加低碳节能的解决方案扫清了障碍,有助于推动低碳化进程。收购GaN Systems将显著推进公司的氮化镓技术路线图,并让我们同时拥有所有主要的功率半导体技术,进一步增强英飞凌在功率系统领域的领导地位。我们欢迎GaN Systems的新同事加入英飞凌。”
目前,英飞凌共有450名氮化镓技术专家和超过350个氮化镓技术专利族,这进一步扩大了英飞凌在功率半导体领域的领先优势,并将大幅缩短新产品上市周期。英飞凌和GaN Systems在知识产权、对应用的深刻理解以及成熟的客户项目规划方面优势互补,这为英飞凌满足各种快速增长的应用需求创造了极为有利的条件。
2023年3月2日,英飞凌和GaN Systems联合宣布,双方已签署最终协议。根据该协议,英飞凌将斥资8.3亿美元收购GaN Systems。这笔“全现金”收购交易是使用现有的流动资金来完成的。
氮化镓应用不断扩大
氮化镓(GaN)是第三代半导体的主要代表材料之一,凭借宽禁带、高频率、低损耗、抗辐射强等特性优势,氮化镓可以满足各种应用场景对高效率、低能耗、高性价比的要求,可广泛应用于LED、激光器、太阳能电池、无线通讯、快充、工业和汽车等领域。
从特性上看,氮化镓的禁带宽度为3.4eV,大于GaAs(1.424eV)和SiC(3.3eV),这使得GaN具有更高的击穿电压和热稳定性,使得氮化镓在高温、高频、高功率电子器件中具有更好的性能;氮化镓的电子迁移率高达2000cm²/Vs,比GaAs和Si的电子迁移率更高,使得氮化镓在高频器件中具有更高的电子速度和更低的导通损耗。
近年来,随着性能的提升,氮化镓的应用范围不断扩大,目前氮化镓的应用市场正从消费电子市场,向数据中心、可再生能源甚至新能源汽车市场扩充。英飞凌认为,未来GaN的全球使用量将会大大超过SiC,并且在多个领域取代SiC的应用,尤其是到了2030年。
据市场研究机构TrendForce集邦咨询显示,到2026年,全球GaN功率元件市场规模将从2022年的1.8亿美金成长到13.3亿美金,复合增长率高达65%。
撬动千亿市场
氮化镓目前与新能源汽车、光伏、5G、消费快充等下游领域深度绑定。2017年-2021年,氮化镓市场规模从78.7亿元提高至358.3亿元,年复合增长率40.1%。
根据数据,有相关机构指出,随着氮化镓在新能源汽车应用渗透率提升,及在垃圾处理领域等应用的拓展,预计到2026年氮化镓市场规模将增长至1029.7亿元,年复合增长率27.7%。
另外,在A股市场,看好氮化镓的逻辑有以下3点:
第一、技术优势:相比传统的硅材料,氮化镓具有更高的电子迁移率和更低的电阻率,能够实现更高的工作频率和更低的功耗。这使得氮化镓在5G通信、物联网、人工智能等领域具有巨大的应用潜力。
第二、市场需求:随着5G网络的快速发展和智能设备的普及,对高频电子器件和功率器件的需求不断增加。而且氮化镓作为一种理想的材料,能够满足高频和高功率的需求,因此市场需求将持续增长。
第三、政策支持:我国一直重视半导体产业的发展,并出台了一系列支持政策,这将为氮化镓产业提供良好的政策环境和市场机遇。
氮化镓引发一场争夺战?
氮化镓市场规模逐渐增长,未来前景可期。与此同时,强烈的需求正驱动着许多厂商争先布局,包括英飞凌、BelGaN、DB Hi-Tech、Transphorm、三星电子、英诺赛科、三安光电、赛微电子、华润微、珠海镓未来等厂商正在扩充生产线,加速部署氮化镓产品应用落地。
从近期部分厂商动态来看,英飞凌除了收购GaN Systems,还宣布斥资20亿欧元对碳化硅和氮化镓进行扩产;BelGaN通过收购Onsemi位于比利时的6英寸晶圆厂,计划将其改造成氮化镓代工厂。
瑞典公司SweGaN3月宣布正在瑞典林雪平的创新材料集群建设一个新总部,包括一个大规模的半导体生产设施,该项目计划于今年第二季度末完成,将部署创新制造工艺,以大批量生产下一代GaN-on-SiC工程外延晶圆,预计年产能将高达4万片4/6英寸外延片。
据韩国媒体《BusinessKorea 》7月报导,三星电子即将进军氮化镓 (GaN)市场,目的是为了满足汽车领域对功率半导体的需求。报导引用知情人士的说法指出,三星电子在韩国、美国举办的“2023三星晶圆代工论坛”活动宣布,将在2025年起,为消费级、资料中心和汽车应用提供8寸氮化镓晶圆代工服务。
9月,东科半导体与北京大学共同组建的第三代半导体联合研发中心正式揭牌成立。该研发中心将瞄准国家和产业发展全局的创新需求,以第三代半导体氮化镓关键核心技术和重大应用研发为核心使命,重点突破材料、器件、工艺技术瓶颈,增强东科半导体在第三代半导体技术上的创新能力和市场主导力。
同月,中国科学院深圳先进技术研究院光子信息与能源材料研究中心与深圳市纳设智能装备有限公司成立了先进材料联合实验室,推进产学研深度融合。双方除了着重于工艺和设备的合作外,联合实验室还将对其他半导体先进材料进行研究,如氮化铝、氮化镓、石墨烯等先进材料生长设备及工艺。
10月中旬,格芯宣布已获得美国提供的3500万美元联邦资金,以加速其位于佛蒙特州Essex Junction的工厂在硅半导体上制造差异化氮化镓(GaN)芯片。格芯总裁兼CEO Thomas Caulfield表示:“硅基氮化镓是新兴市场高性能射频、高压功率开关和控制应用的理想技术,对于6G无线通信、工业物联网和电动汽车非常重要。”
市场接受度和行业景气度不断攀升
目前,氮化镓已经拥有了足够广阔的应用空间。作为第三代半导体新技术,也是全球各国争相角逐的市场,并且市面上已经形成了多股氮化镓代表势力,氮化镓的市场接受度和行业景气度正在不断攀升,技术革新也在不断推进。
同时,随着5G通信生态、AIGC、云计算、大数据等新兴技术的快速发展,高速、高效、高能的半导体器件需求将日益增加,氮化镓器件作为重要的功率和射频器件,将具备广阔的发展前景。同时,随着新基建、新能源、新消费等领域的持续推进,氮化镓器件将在太阳能逆变器、风力发电、新能源汽车等方面得到广泛应用。
因此,伴随5G通信和消费电子业务的确定性增长、新能源赛道与数据中心的集中爆发,未来3-5年氮化镓器件将在5G通信基站、高功率电源、新能源汽车、数据中心等领域出现较快增长。
可以说,氮化镓在性能、效率、能耗、尺寸等方面较市场主流的硅功率器件均有显著数量级的提升,但其发展也面临着许多问题。一方面,氮化镓是自然界没有的物质,完全要靠人工合成。氮化镓没有液态,因此不能使用单晶硅生产工艺的直拉法拉出单晶,纯靠气体反应合成。另一方面,由于反应时间长,速度慢,反应副产物多,设备要求苛刻,技术异常复杂,产能极低,导致氮化镓单晶材料极其难得。但是目前来看,缺点在于产品成本很高,不利于大批量生产。
期待氮化镓产业快速增长的同时,要想氮化镓产能提升、成本控制并形成完全产业链,所面对的挑战也不容小觑。目前,我国多个科研团队已经开始着手攻克相关难题,期待我国凭借氮化镓等材料技术优势,早日实现第三代半导体真正自主可控。
来源:贤集网
免责声明:本文为转载文章,转载此文目的在于传递更多信息,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请联系小编进行处理。
推荐阅读: