毫米波雷达道路交通目标检测

发布时间:2023-10-12  

1. 简介

一般来说,已经提出了一些提高交通场景中雷达性能的方法,主要可分为两类:(1)围绕信号处理方向,尽可能减少或消除干扰信号,以保证目标信号的纯度。(2)设计更好的探测器。


在干扰信号抑制领域,将干扰污染的样本从信号中剔除是最直接的干扰抑制方法。尽管如此,它也会抑制目标的部分有效信号,导致有用信号的切口样本重建精度降低。为了缓解这种影响,该文提出一种基于迭代矩阵-铅笔(MP)方法的干扰抑制外推法。但重建信号的精度会随着污染样品比例的增加而降低。为了提高信号重构精度,该文提出一种基于汉克尔矩阵稀疏低秩分解的方法但是,迭代和最佳质量选择增加了算法的复杂性。为了处理雷达间干扰,提出了一些新方法,例如设计一种新的正交噪声波形或在可调Q因子小波变换(TQWT)域中提出干扰抑制技术。此外,一些研究人员已经开始从距离和多普勒细胞迁移校准开始,以减少信号失真。


设计更好的探测器是提高雷达应用能力的另一个方向。与信号干扰抑制相比,虽然雷达探测性能的提升较弱,但探测器的设计更为直接。特别是,在大多数情况下,它不会增加额外的链接和计算复杂性,这更适合具有低性能处理器的低成本雷达系统。所以是从探测器设计的角度来看。在雷达的实际应用中,目标总是出现在复杂多变的噪声背景之前,受时间和位置变化的影响,因此固定阈值检测方法无法有效地将目标与背景噪声区分开来。雷达常数误报率(CFAR)检测,通过评估当前杂波环境自适应设置检测阈值,是分离目标和背景的关键技术。因此,适当的CFAR检测算法可以提高雷达探测性能,为雷达数据处理提供准确的目标信息。它也成为雷达探测的一个关键研究方面。


最早提出的CFAR检测算法是细胞平均CFAR(CA-CFAR)。这是基于平均局部噪声功率水平来检测目标。设计一个参考窗口,以窗口的中心单元为候选目标,用窗口中其他单元的幅值累积值作为背景噪声功率的估计值。目标是否存在是通过判断候选目标的功率值和估计的噪声功率值来确定的。CA-CFAR在非均匀噪声和多目标环境下的检测性能较差,因为参考窗口内的干扰信号或其他目标会导致背景噪声估计误差。针对多目标或非均匀噪声下CA-CFAR检测性能下降的问题,最大选择检测(GO-CFAR)和最小选择检测 (SO-CFAR)被提议。GO-CFAR在杂乱边缘环境下可以保持良好的虚警控制性能,但在多目标环境下会出现“目标屏蔽”。


SO-CFAR具有良好的多目标分辨能力,但其虚警控制能力较弱。有序统计 CFAR (OS-CFAR)是数字图像处理中另一种典型的CFAR检测方法,源自中值滤波器概念。它根据功率值排列参考窗口中的采样单元,并选择其中一个样本功率值作为决策阈值。与CA-CFAR的检测性能相比,OS-CFAR对多目标检测具有较强的鲁棒性,但产生的CFAR损失较高。提出了一些结合OS和CA的新方法。采用修整均值检测器 (TM-CFAR)以算法为例。参考窗口中的采样点按振幅值排序,如 OS-CFAR。然后去除具有最大和最小振幅的部分采样点。最后,将剩余的采样点平均为背景噪声的估计值。


现在,针对不同的应用需求,已经提出了基于传统方法的CFAR检测算法。一些学者致力于研究探测器的多目标探测能力。例如,提出OSCA-CFAR算法,将CA-CFAR算法和OS-CFAR算法相结合,提高毫米波雷达的多目标探测能力,给出理想噪声环境下的算法性能仿真。一些研究人员专注于提高探测器在复杂集群环境中的检测性能。根据中心极限定理和信号对数压缩原理,提出了一种Comp-CFAR方法,用于具有长拖尾效应特性的杂波中目标检测。基于zlog(z)的CFAR检测器降低威布尔杂波误报率。其他一些学者提出了一种结合机器学习的新方法。在包含 CFAR 滑动窗口输入和输出的数据集上训练前馈人工神经网络 (ANN),以提高 CFAR 检测的效率。但是,这种方式增加了算法的复杂性。


表 1 简要总结了上述 CFAR 检测算法。目前所有CFAR算法都通过设计参考窗口并处理窗口中的数据来实现目标检测。参考窗的设计可以有效降低杂波干扰水平,但有两个缺点。一是滑动窗口会降低检测物体的效率。特别是在线性调频连续波(LFMCW)雷达系统中,CFAR探测器的输入是二维距离多普勒矩阵(RDM)。虽然CFAR算法的原理没有改变,但参考窗口的滑动已经从一维滑动搜索转变为二维滑动搜索,大大降低了雷达目标探测的实时性。另一个缺点是窗口限制了背景噪声估计的采样点。理论上,使用的采样点越多,估计的噪声功率值越准确,CFAR检测精度越高。参考窗口的设计和滑动限制了雷达目标检测的效率。


表 1. 简要总结了 CFAR 算法的特征。

图片

幸运的是,与海面等复杂的背景环境相比,交通道路上的背景噪音相对简单。特别是当雷达监测运动目标时,使用去零多普勒方法可以消除背景噪声数据对检测的影响。结合非理想目标运动(车辆转弯、制动和变道)、目标反射区域的不规则性以及帧数据的独立性,认为交通道路上的运动目标回波服从理想的Swerling II模型。基于上述分析,对于背景噪声相对干净的道路交通监控应用,可能不需要为复杂噪声和干扰降低而设计的参考窗口。相反,滑动窗口增加了算法的时间复杂度并降低了雷达监控的效率。为满足交通监测雷达系统低处理时延的要求,提出一种基于蒙特卡罗的CFAR算法,以提高交通环境下雷达探测效率和对运动目标的灵敏度。与传统算法相比,该算法具有更高的检测灵敏度,更重要的是不需要参考窗口的设计和滑动,大大降低了算法的时间复杂度,提高了检测速度和效率。

贡献总结如下:首先,在所提出的CFAR检测算法中,对整个RDM矩阵区域进行随机采样,得到当前时刻背景噪声功率估计的采样点;该原理是将蒙特卡罗模拟原理(通过独立重复实验获得未知量的性质)转换为RDM矩阵域的随机抽样。这种方式突破了参考窗口的限制,可以增加大量的采样点进行背景噪声估计。其次,干扰点滤波方法提高了背景噪声估计的精度。根据采样点的振幅值对采样点进行排序和过滤,以去除可能的目标点或干扰点。然后,通过均值法得到背景噪声估计的功率值。最后,通过背景噪声估计提取RDM矩阵中的目标点。此外,给出了算法的参数设置方法,例如,根据当前的物理平台和应用环境,通过反复统计得到算法参数值。配置参数过程只需在雷达系统环境不变时执行一次。仿真和实际实验表明,与传统方法相比,该方法具有更高的检测灵敏度、更高的检测精度和更低的检测延迟,提高了交通监控中的雷达探测效率。

2. 交通场景

通常,交通传感器安装在道路两侧或延伸到道路中心的固定支架上(如图1所示),并且要求它们具有以下基本功能:

图片

图1. 交通道路场景。

  • 检测灵敏度高。视野中的所有目标都可以完全检测到,包括目标的部分遮挡;

  • 低信息延迟能力。它可以实时反映路况,即要求数据采集与路况输出之间的延迟尽可能短(理想情况下,延迟不应超过100毫秒);

  • 耐候性。传感器应尽量减少夜间、雾和其他天气造成的影响。

毫米波雷达被认为具有用于城市交通监测的潜力,因为不受环境影响,具有高范围分辨率和低应用成本。CFAR探测器作为雷达目标提取的重要组成部分,已经得到了广泛的研究。通过研究传统的CFAR算法,分析交通环境的特点,给出了一种新的CFAR检测算法,以提高雷达对目标检测的灵敏度、多目标检测能力,降低时延,希望为增强雷达在城市交通监测中的适应性提供独特的参考。

3. 交通场景雷达背景噪声分析

基于雷达芯片(CAL77S244)的射频前端具有三个发射天线和四个接收天线,用于发射毫米波和接收目标回波信号。此外,四通道高速ADC用于数据采集。最后,在基于FPGA和ARM架构的后端基带处理系统上实现数字处理算法和目标信息的提取。数据采集场景和雷达系统如图2所示。

图片

图2. ( a ) 雷达系统。( b ) 数据收集方案。

图3显示了背景噪声数据收集和显示。图3a是持续误报检测数据采集的流程图。在该雷达系统中,四个接收通道接收背景环境中雷达的电磁回波,并通过非相干累积获得RDM矩阵。图3b显示了在没有移动目标的条件下RDM的功率幅度分布。功率幅值在零多普勒区域(静止物体区域)中突然且不均匀,这是由不同距离的物体数量和物体反射区域的大小等因素共同造成的。初步观察表明,噪声功率均匀分布在非零多普勒域(运动目标区域),无明显突变。此外,静止物体的功率不会显著扩展到移动目标所在的区域。

图片

图3. ( a ) RDM数据采集过程。( b ) 数据收集方案。

采用距离维数和速度维数数据方差作为测量数据离散度的有效方法,评估RDM矩阵中移动目标区域噪声功率幅值的分布。它计算了 RDM 中数据集的每一行(速度维度)或列(距离维度)的方差,如图 4 所示(多个统计量的平均值)。值得注意的是,在计算方差之前,以行人的平均速度为参考(0.5 m/s),消除了RDM矩阵中静态物体所在的像元,例如速度低于0.5 m/s的像元。速度维数方差和距离维数方差均小于0.018,可以认为背景噪声功率幅值在非零多普勒域中相对均匀。

图片

图4. RDM 矩阵中的背景噪声幅度色散 ( a ) 范围方向上的噪声幅度方差。( b ) 多普勒方向的噪声幅度变化。

功率密度分布是背景噪声的另一个特征。以前,假设雷达噪声分布满足瑞利分布:

图片

RDM中的非零多普勒细胞通过MATLAB分布拟合工具箱进行采样处理,然后数据分布(紫色)和瑞利分布(红色)的拟合曲线如图5a所示。图5b显示了数据概率分布与瑞利分布之间的匹配度,即数据越接近曲线,它与瑞利分布的一致性越大。

图片

图5. RDM矩阵噪声密度函数仿真拟合实验实例 ( a )噪声分布曲线。( b ) 瑞利分布的匹配度。


文章来源于:电子工程世界    原文链接
本站所有转载文章系出于传递更多信息之目的,且明确注明来源,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。

相关文章

    雷达测速仪在的应用及如何加强管理;为了维护道路安全秩序,预防和减少交通事故,保护人身安全,保护公民、法人和其他组织的财产安全及其他合法权益,提高通行效率,从2004年5月1日开始,我国施行的《中华......
    窄波束雷达测速仪如何安装,有哪两种安装方式;窄波束雷达测速仪有两种安装方式,分两个方向测速,组合起来就有四种安装方式。 1、 顶装方式: 来向测速测速仪安装于车道正向,安装高度为路面上4到8m......
    该激光光束基本为射线,估测速距离相对于雷达测速有效距离远,可测1000M外; 2、测速精度高,误差《1公里; 3、鉴于激光测速的原理,激光光束必须要瞄准垂直与激光光束的平面反射点,又由于被测车辆距离太远、且处......
    键控连续波、可探测单个目标的具体和速度)、FMCW(调频连续波,可对多个目标实现测距和测速,分辨率高,技术成熟)。 生产和制造中的雷达测试 目前,由于雷达频率受各国政府严格管控,车载毫米波雷达......
    的不同,就是可以感应的雷达波的频段不同。因为中国各城市道路的雷达测速设备从不同的国家进口,使用的雷达频率大多并不相同,同一个城市有些装了来之三四个国家的不同频段的雷达测速器。低端的雷达探测器,往往只能感应一个频段的雷达......
    公里前行,若想要更快,司机只需要踩油门,车速就会跟着改变,你能感觉得到速速有变化,但你看车上的时速表也能知道,或是路上的雷达测速显示牌。但再试想一下,现在不是测试车的速度,而是雷达测速......
    驾驶员可能存在的驾驶风险的设备。其工作原理主要包括以下几个方面: 1. 信号接收:汽车电子狗内置无线接收模块,可以接收来自其他车辆或交通设施(如雷达测速仪、闯红灯抓拍设备等)的无线电信号。 2. 信号处理:接收......
    测距行车防撞器还可以与其他安全装置相结合,如红外线防撞器、雷达测速仪等,共同构成行车安全保护系统,提高行车安全性能。摩天射频激光测距传感器产品覆盖:宽温度范围,复杂表面,毫米级精度、0.1-40米量程距离监测应用。对于用于汽车防撞探测器的激光测距传感器推荐如下选型表: ......
    R&S验证恩智浦的下一代汽车雷达传感器设计; 罗德与施瓦茨(以下简称R&S)的R&S RTS雷达测试解决方案验证了恩智浦半导体的下一代雷达传感器参考设计的性能。双方的合作推动汽车雷达......
    R&S验证恩智浦的下一代汽车雷达传感器设计; 罗德与施瓦茨(以下简称R&S)的R&S RTS雷达测试解决方案验证了恩智浦半导体的下一代雷达传感器参考设计的性能。双方的合作推动汽车雷达......

我们与500+贴片厂合作,完美满足客户的定制需求。为品牌提供定制化的推广方案、专属产品特色页,多渠道推广,SEM/SEO精准营销以及与公众号的联合推广...详细>>

利用葫芦芯平台的卓越技术服务和新产品推广能力,原厂代理能轻松打入消费物联网(IOT)、信息与通信(ICT)、汽车及新能源汽车、工业自动化及工业物联网、装备及功率电子...详细>>

充分利用其强大的电子元器件采购流量,创新性地为这些物料提供了一个全新的窗口。我们的高效数字营销技术,不仅可以助你轻松识别与连接到需求方,更能够极大地提高“闲置物料”的处理能力,通过葫芦芯平台...详细>>

我们的目标很明确:构建一个全方位的半导体产业生态系统。成为一家全球领先的半导体互联网生态公司。目前,我们已成功打造了智能汽车、智能家居、大健康医疗、机器人和材料等五大生态领域。更为重要的是...详细>>

我们深知加工与定制类服务商的价值和重要性,因此,我们倾力为您提供最顶尖的营销资源。在我们的平台上,您可以直接接触到100万的研发工程师和采购工程师,以及10万的活跃客户群体...详细>>

凭借我们强大的专业流量和尖端的互联网数字营销技术,我们承诺为原厂提供免费的产品资料推广服务。无论是最新的资讯、技术动态还是创新产品,都可以通过我们的平台迅速传达给目标客户...详细>>

我们不止于将线索转化为潜在客户。葫芦芯平台致力于形成业务闭环,从引流、宣传到最终销售,全程跟进,确保每一个potential lead都得到妥善处理,从而大幅提高转化率。不仅如此...详细>>